

Electro(magnetic) fields interactions with cells: mechanistic insights and potential new therapeutic applications

Journées scientifiques URSI France 12.06.2025

Leslie VALLET, Franck M. ANDRE & Lluis M. MIR

The grayed areas cover figures that are in the process of being published.

The presentation will be updated as soon as the publication process is finalized.

Bioelectromagnetism/Bioelectromagnetics : the study of the interactions between electromagnetic fields and biological systems

Malmivuo & Plonsey, 1995

BEM: Bioelectromagnetism / BEN: Bioengineering / BPH: Biophysics / MPH : Medical physics / MEL: Medical electronics / MEN : Medical engineering

Bioelectromagnetism: Endogenous physiological electro(magnetic) fields Observations and lessons learned from physiology

5

Bioelectromagnetism: Applying exogenous EMFs to biological systems Use of direct current electric fields (DC-EF)

Bioelectromagnetism: Applying exogenous EMFs to biological systems Use of alternating current electric fields (AC-EF)

 Electric Field (E) induces: water and phospholipid head polarization + ions accumulation at the membrane, modifying transmembrane potential (ΔΨm).

When ΔΨm reaches a critical threshold, pores are generated (a).

- Phospholipids in the membrane can get oxidized (b).
- **Membrane proteins** may be **altered** (c). JS 2025 URSI France, 12/06/25

Oxidized phospholipid

2

Electroporation/ Electropermeabilization can be reversible or irreversible.

Willows Veterinary Centre, UK

Tellado et al., 2022

Electrochemotherapy (ECT) – technical considerations

IGEA S.p.A.

Applying pulsed electric fields requires electrodes in contact with tissues to be exposed

Invasive and complex procedures for deep tissue treatment

Surgery, Interventional radiology

What if PEFs could be applied without electrodes in contact?

Theme 1 : Cell electropermeabilization with subnanosecond pulsed electric fields (SubnsPEFs)

Cell bioelectro(magnetic) property impacted : transmembrane potential (ΔΨm)

Desired effect : Cell membrane permeabilization

Technological aspects : use of ultrashort PEFs, towards contactless PEF delivery

Future applications prospects : performing contactless/ non-invasive PEF-based therapeutic applications (e.g., Electrochemotherapy)

Generator delivering SubnsPEFs

Introduction	Results theme 1	Results theme 2 Conclusions & perspectives						
Methods								
Subnanosed	cond PEFs applied	 E. coli DH5α in deionized water (low conductivity) DNA binding fluorescent stains: SYTO®17 (SYTO), can penetrate cells YO-PRO™-1 iodide (YP), cannot penetrate cells if the membrane is intact Experimental set-up SYTO + YP PEF Flow Cytometry 5 min, RT 5 min, RT 						
Duration Rise	h : 900 ps FWMH time : 500 ps	Flow SYTO + YP Flow Cytometry LB medium 25 min, RT Dermeabilization at 30 min PEF Colony Colony LB agar 20 h, 37°C						
JS 2025 URSI France, 12/06/25		ISurvival/alvision at 20 n12						

JS 2025 URSI France, 12/06/25

Sub-nanosecond PEFs tested in this study generate a long lasting permeabilization

Long-lasting permeabilization can be associated with **oxidative phenomena** at the level of the membrane

α-Tocopheryl phosphate (TC) + L-Ascorbic acid (VitC) in combination צ ermeabilization.

The permeabilization at **« low » electric field** and **« low » number of pulses** depends on **oxidative phenomena**.

Peculiarities of sub-nanosecond PEFs

Effect of the electric field amplitude

Permeabilization with subnsPEFS depends on oxidative phenomena

Oxidative phenomena are initiated by radical species

Introduction	Results theme 1		
	Effect of the ele	С	

Effect of the electric field amplitude

Introduction	Results theme 1		Results theme 2	Conclusions & perspectives			
Conclusions							
Subnanosecond PEFs generate efficient cell permeabilization at relatively low electric field amplitude Possible to reach these electric field amplitude with current antenna technologies			Parametric study: The number of pulses, pulse repetition frequency and temperature have similar influence as for longer PEFs.				
<u>Mechanisms:</u> Permeabilization gene amplitude depends or	erated at « low » electric field n oxidative phenomena	d	<u>Mechanistic hypothesis:</u>	10			

JS 2025 URSI France, 12/06/25

Theme 2 : Using EMFs to characterize and control features of Mesenchymal Stem Cells (MSCs) in proliferation and differentiation

Calcium (Ca²⁺) oscillations of MSCs in proliferation and differentiation hacking with microsecond PEFs

Cell bioelectro(magnetic) property impacted : transmembrane potential (ΔΨm)

Desired effect: Slight cell membrane permeabilization to Ca²⁺ ions

Technological aspects: developpment of *invitro* exposure system for attached cells to µsPEFs

Future applications prospects: Influence of MSCs cell fate in the context of regenerative therapies

Dielectrophoretic behavior of MSCs in proliferation and differentiation

Cell bioelectro(magnetic) property impacted : cell polarization

Objectives: Assess (di)electric properties of MSCs

Technological aspects: development of nondamaging separation methologies

Future applications prospects: separation of differentiating MSCs (from early stages) from undifferentiated MSCs, in research or in clinics

Ca²⁺ oscillations recorded in MSCs with Fluo-4 Ca²⁺ binding fluorescent dye

Conclusions & perspectives

Controlling Ca²⁺ oscillations to influence cellular processes?

Characterization of Ca²⁺ oscillations in differentiating MSCs

- Osteogenic differentiation : complete α MEM + DEX (100 nM) + Ascorbic acid (200 μ M) + β -Glycerol phosphate (10 mM)
- e 🕶 Adipogenic differentiation : complete DMEM + Insulin (10 μg/mL) + IBMX (500 μM) + DEX (1 μM) + Indomethacin (200 μM)

Evolution of Ca²⁺ oscillations in MSCs in proliferation and differentiation

Ca²⁺ oscillations are mostly comprised between 10 and 17 mHz in proliferating MSCs Ca²⁺ oscillations frequency decreases in differentiation down to full arrest in differentiated state JS 2025 URSI France, 12/06/25

Electrical stimulations and MSC proliferation

Visible difference in proliferation starting from day 3

DEP on MSCs in differentiation : Cells (di)electric properties

JS 2025 URSI France, 12/06/25

Introduction		Résultats thématique 1	Résultats thématique 2	Conclusions & perspectives	
	Cell	permeabilization induced by SubnsPEFs	EMFs to characterize and co	ontrol properties of MSCs	
Fundamental aspects / mechanistics insights	Sub perr	nsPEFs induced cell neabilization Depends on oxidative phenomena	Ca2+ oscillations in MSCs : Proliferation: frequencies between 10 and 17 mHz Differentiation: Below 10 mHz, progressive → down to complete arrest Microsecond PEFs can be used to increase proliferation	In differentiating MSCs: From week 1 Membrane permittivity ۲ Membrane conductivity ۲	
Applications / medical perspectives	Per nor the (e.g	forming contactless/ n-invasive PEF-based prapeutic applications g., Electrochemotherapy) Ongoing assessment of l permeabilization with ntactless SubnsPEFs	Influence MSCs fate in the context of regenerative therapies with PEFs – Ongoing research in RISEUP project aiming at regenerating spinal cord in spinal cord injury	Separation of MSCs in differentiation (from early stages) and undifferentiated MSCs (enrichment/ purification) for use in research or in clinics	

Acknowledgements

In METSY (Gustave Roussy, Villejuif):

- Pr. Lluis M. MIR
- Dr. Franck ANDRE
- Dr. Nazanine MODJTAHEDI
- Dr. Catherine BRENNER
- Romain FERNANDES
- Dr. Marina PETIDIER
- Dr. Natalia NAUMOVA
- Enzo GAUTREAU
- Dr. Thaï-Hoa CHUNG

- Dr. Amina GHORBEL
- Dr. Jean-Rémi BERTRAND
- Dr Alain DEROUSSENT
- Dr. Kenza NEDARA
- Dr. Camille REINHARDT
- Hong Toan LAI
- Dr. Daniela PEDROSO
- Killian LAGUERRE
- And to all members of METSY

In SIAME (Université de Pau):

- Pr. Laurent PECASTAING
- Dr. Njomza IBRAHIMI
- Dr. Laurent ARIZTIA
- Dr. Alexey ZHABIN

- Dr. Antoine DE FERRON
- Dr. Marc RIVALETTO
- Dr. Bucur NOVAC

In INRAE Rennes:

Dr. Clair Poignard

In Université de Lorraine

- Dr. Mounir Tarek

In Bundesamt für Strahlenschutz Salzgitter, Germany

- Dr. Andreas Deser

In Carol Davila University :

- Dr. Mihaela MOISESCU
 - Dr. Ioan TIVIG
 - Pr. Tudor SAVOPOL

DGA - ANR Astrid ESCAPADE

EU for financing this research work in the frame of the RISEUP FETOpen project (proposal n°964562)

Thank you for your attention

DGA

DIRECTION

GÉNÉRALE DE L'ARMEMENT