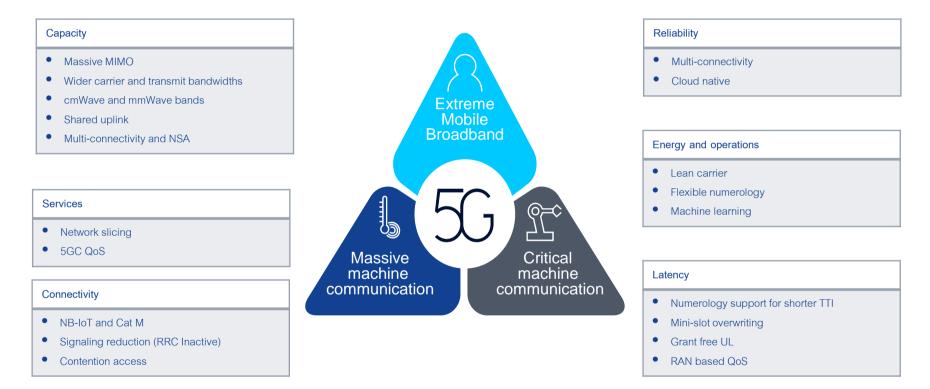
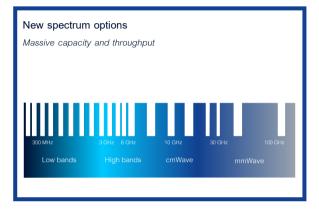
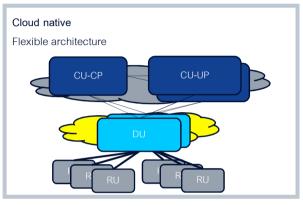
NOKIA

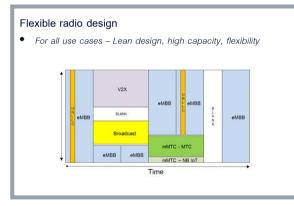

5G: An Overview

Alistair URIE et Philippe SEHIER Journées scientifiques d'URSI-France, Réseaux du futur : 5G et au-delà March 2020


1 © 2020 Nokia

Overview and Requirements


RAN support for 5G use cases eMBB, URLLC and mMTC

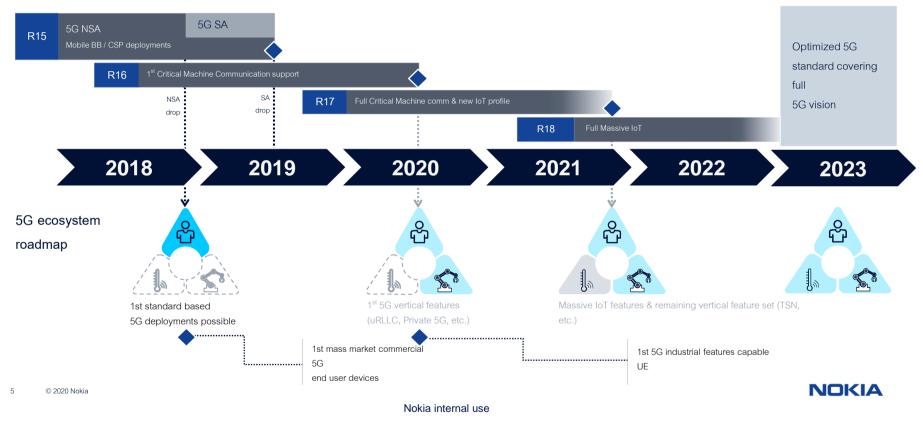


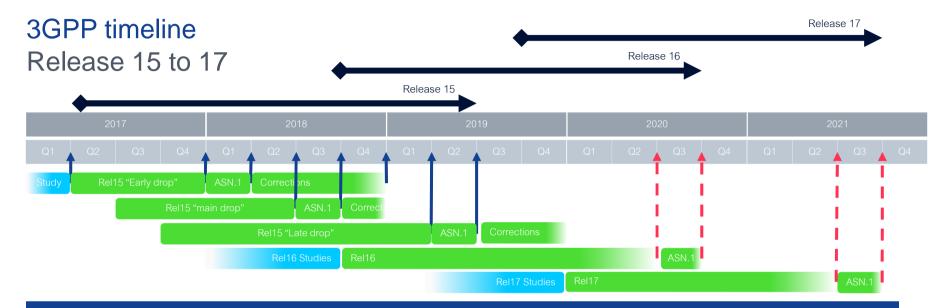
Technology enablers for 5G New Radio (NR) interface and RAN

Massive MIMO

Massive capacity , improved end-user experience and coverage

Multi-connectivity and aggregation End-user experience, extreme mobility, robustness and ultra reliability


NOKIA


4 © 2020 Nokia

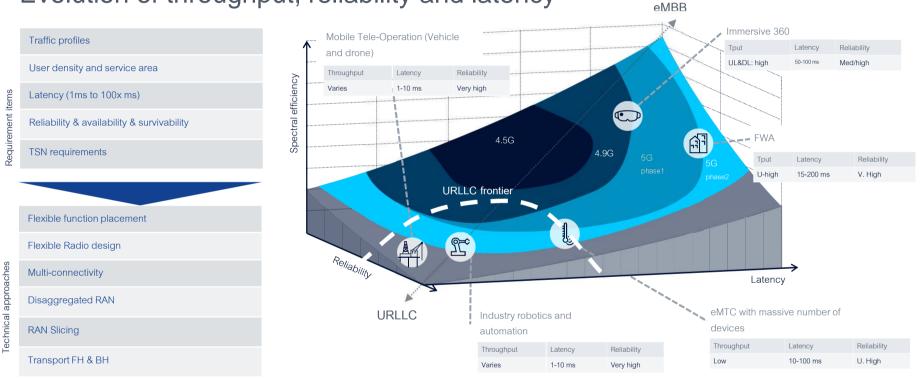
From 5G to Industrial 5G Long term roadmap for Industrial applications

5G standard releases roadmap

Release 15: 5G First release focus on eMBB

Split into three "drops": "Early drop" 5G Non-Standalone (EN-DC NSA option 3) and 5G core (5GC); 5G Standalone (SA, option 2), eLTE (option 5); "Late Drop" for 5GC NSA solutions (NE-DC options 4& NG-EN-DC option 7) and NR-DC

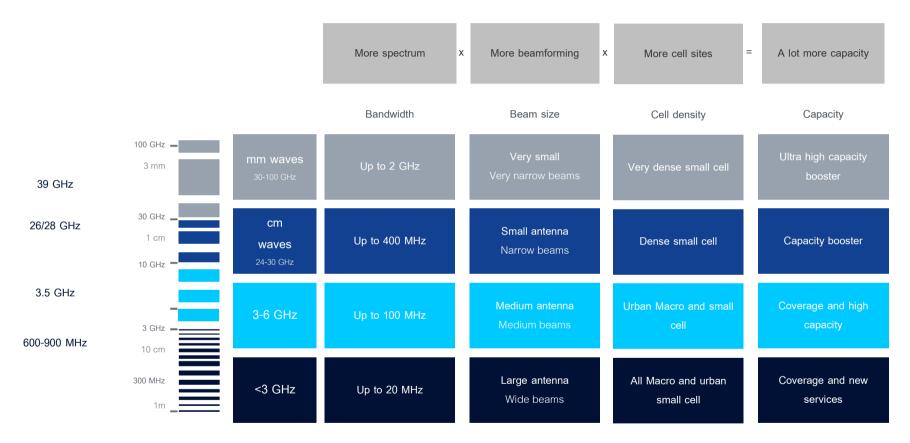
Release 16: Industrial IoT (IIoT), Wireline convergence, Non-public networks, NR-unlicensed


• Studies completed in 2018, rel. 16 completion due March 2020 with ASN.1 due June 2020

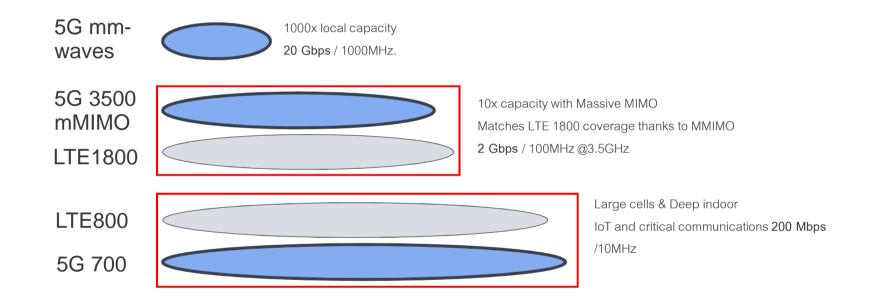
Release17: NR-lite, IIoT enh, Beyond 52 GHz, Non-Terrestrial Networks

• Work started early 2020

6 © 2020 Nokia


Requirements driven by use cases Evolution of throughput, reliability and latency

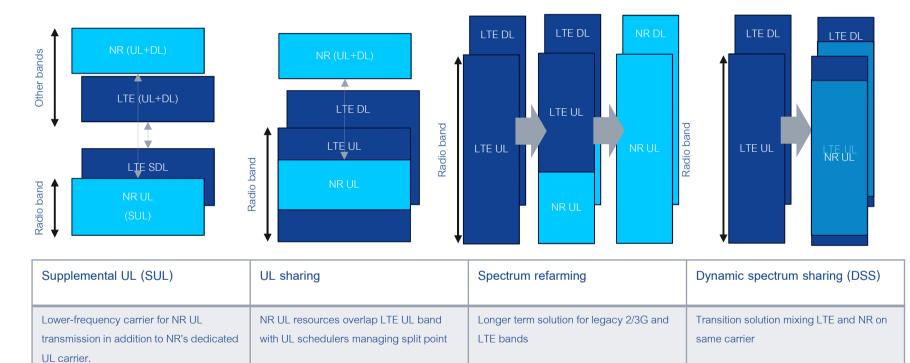
Wide range of requirements and use cases and need to efficiently use the radio resource


Spectrum and Migration

Spectrum: 5G bands from 300 MHz to 100 GHz

9 © 2020 Nokia

5G Spectrum and Coverage Footprint – combination of low and high bands



The combination of different frequency bands fulfills diverse usage needs and coverage

10 © 2020 Nokia

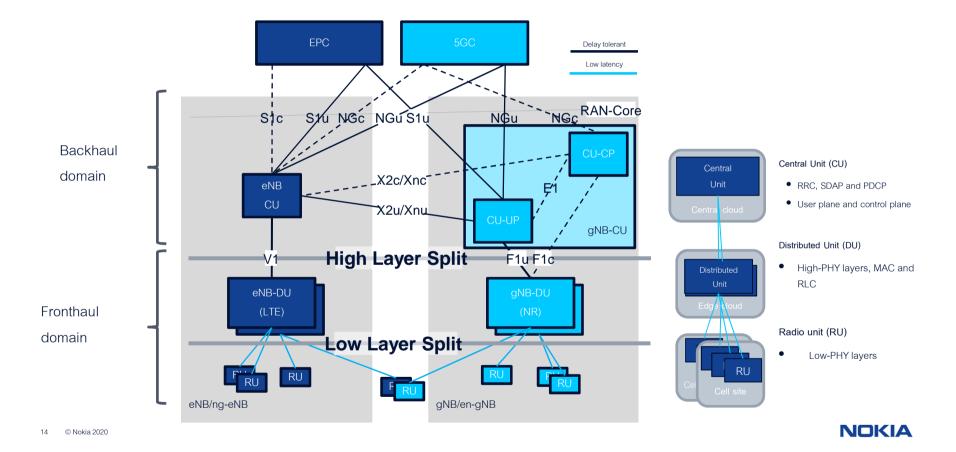
New options for sharing LTE and NR spectrum

Supplemental UL, UL sharing, Spectrum refarming and DSS

11 © 2020 Nokia

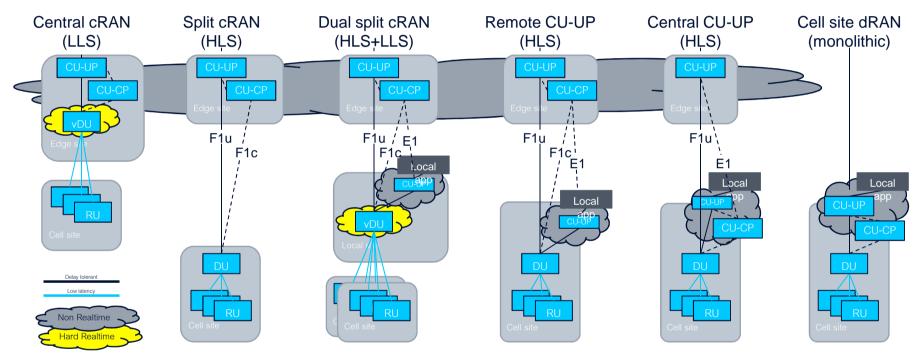
NOKIA

Architecture


Stand-Alone (SA) and Non-Standalone (NSA) 3GPP background – New Radio (NR) functionality

	((··)) NR (5G)	LTE/eLTE (4G) NR (5G)	
Feature	Standalone (SA)	Non-standalone (NSA)	
Master carrier	NR	LTE	
Secondary carrier	-	NR	
Core choice	5G core (5GC)	4G EPC	
Operator perspective	Simple, high performance overlay	Leveraging existing 4G deployments	
Vendor perspective	Independent RAN product	Requires tight interworking with LTE	
End user experience	Peak bitrate set by NR Dedicated Low Latency transport	Peak bitrate is sum of LTE and NR Latency impacted if routed via LTE master	

13 © 2020 Nokia


NOKIA

Functional RAN decomposition

Flexible functions placement

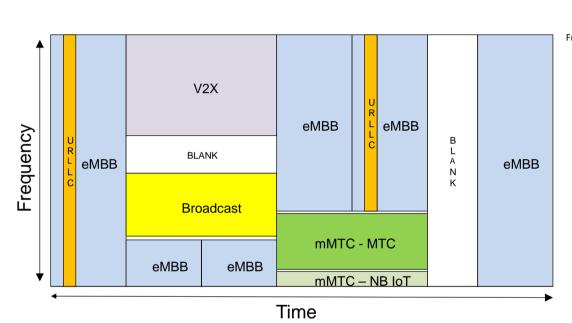
Wide range of potential deployment use cases

DU: Digital Unit, CU: Central Unit, RU: Radio Unit. UP user plane, CP control Plane

15 © 2020 Nokia

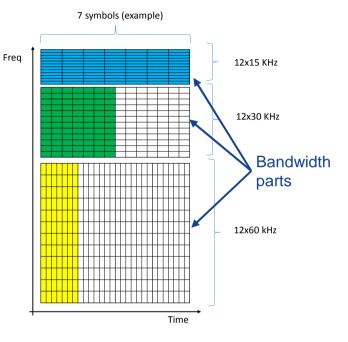
Radio interface

Flexible radio design


"New Radio" (NR) numerology building on LTE

Radio	LTE	New Radio (NR)		
Bands	<4 GHz	< 3GHz	2-6 GHz	> 6 GHz
Multiple access	CP-OFDM / SC-OFDM	CP-OFDM / CP-OFDM (+ SC-OFDM)		
Duplex	FDD, TDD	FDD TDD		DO
Sub-carrier (kHz)	15	15, 30, 60	15, 30, 60	60, 120
Carrier BW (MHz)	1.4 20	5 40	5 100	50 400
Carrier loading	90%	90 97%	90 98%	95%
Slot per 10ms frame	10	10-20	10-80	80
Channel codes	Turbo	LDPC (plus Polar for PBCH and PxCCH channels)		

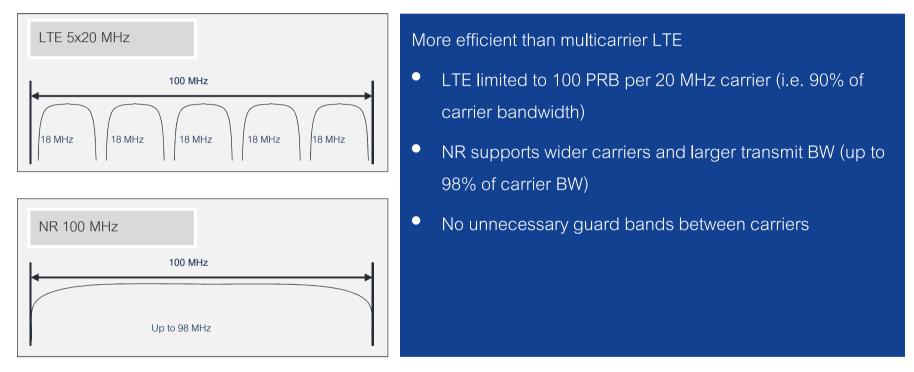
NR radio interface: a more flexible OFDM than LTE


17 © 2020 Nokia

NOKIA

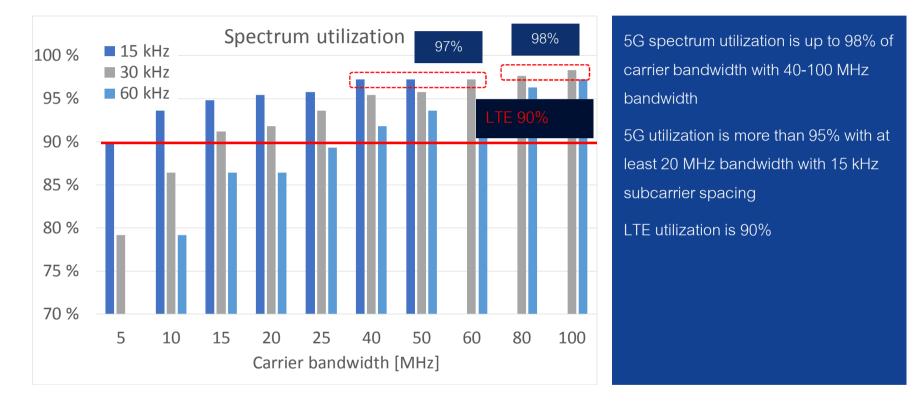
Flexible NR Framework

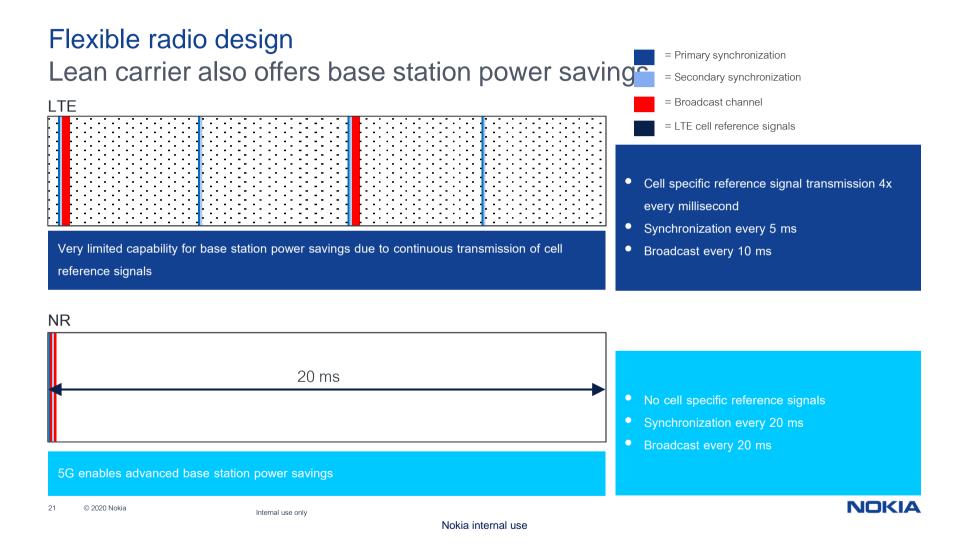
- NR provides flexible framework to support different services and QoS requirements
 - Scalable slot duration, mini-slot and slot aggregation
 - Self-contained slot structure
 - Traffic preemption for URLLC
 - Support for different numerologies for different services
 - Forward compatibility
- 18 © 2020 Nokia



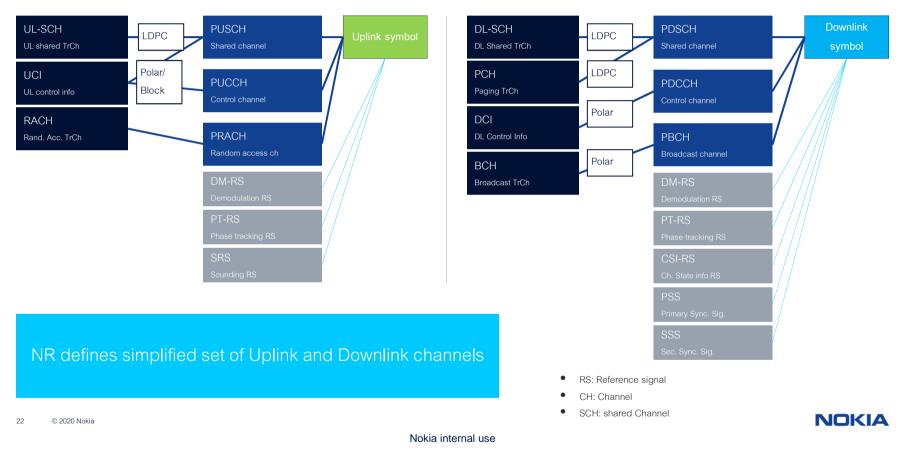
- NR transmission is well-contained in time and frequency
 - Future features can be easily accommodated

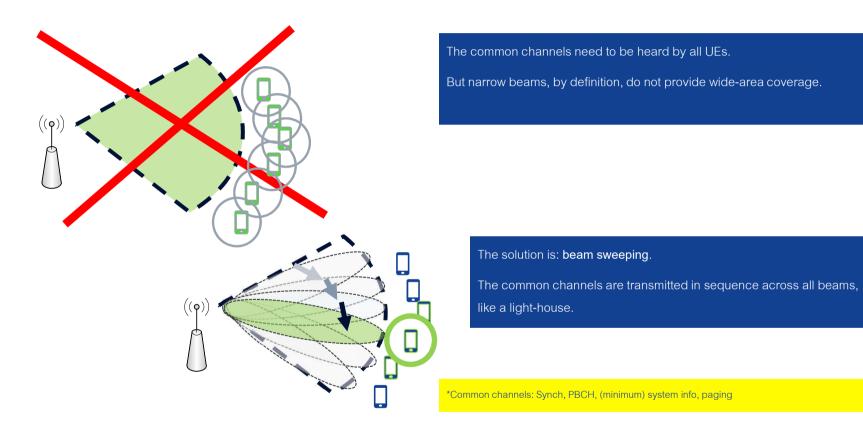
5G Enhances Spectral Utilization


Example: loading within 100 MHz spectrum allocation


Internal use only

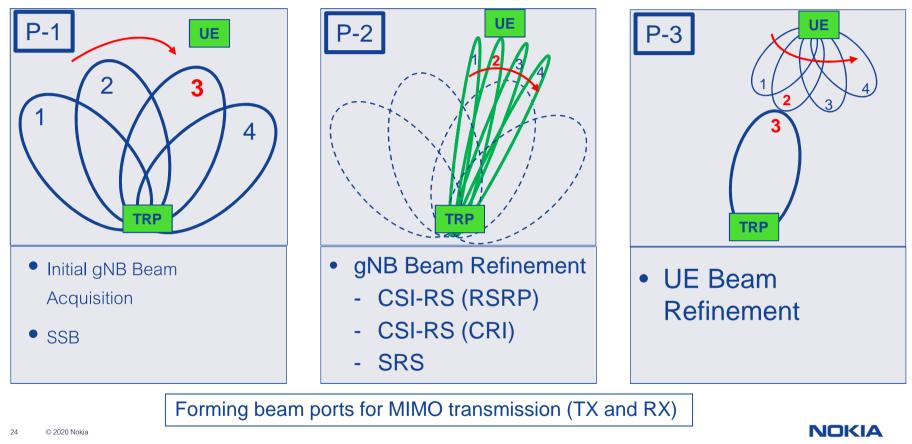
5G Spectrum Utilization up to 98%





Flexible radio design

Mapping and coding of Channels and Physical layer Signals to Symbols


Beamforming – How to provide coverage for the common channels

23 © 2020 Nokia

NOKIA

Downlink MIMO Framework: Beam Management

DL-MIMO Operation – Sub-6GHz

Single CSI-RS	Multiple CSI-RS	SRS-Based	
 CSI-RS may or may not be beamformed Leverage codebook feedback Analogous to LTE Class A Process: gNB transmit CSI-RS UE computes RI/PMI/CQI Maximum of 32 ports in the CSI-RS (codebooks are defined for up to 32 ports) Typically intended for arrays having 32 TXRUs or less with no beam selection (no CRI) 	 Combines beam selection with codebook feedback Analogous to LTE Class B Process: gNB transmits one or more CSI-RS, each in different "directions" UE computes CRI/PMI/CQI Supports arrays having arbitrary number of TXRUs Max 32 ports per CSI-RS 	 Exploits TDD reciprocity Similar to SRS operation in LTE Supports arrays having an arbitrary number of TXRUs. Process: UE transmits SRS Base computes TX weights 	
gNB XXXX XXXX XXXX XXXX RI/PMI(32)/CQI	GNB CSI-RS (8 ports) CSI-RS (8 ports)		

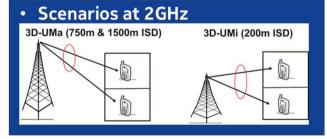
© 2020 Nokia

Disclaimer: NR-MIMO is flexible enough to support many variations on what is described on this slide

DL-MIMO Operation – Above 6GHz

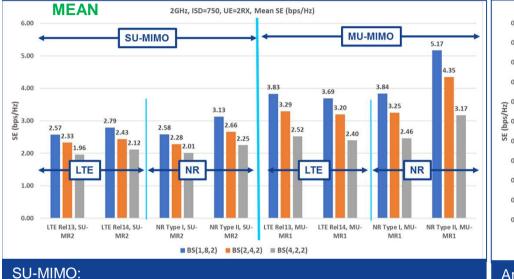
Single Panel Array	Multi-Panel Array		
 Combination of RF Beamforming and digital precoding at baseband RF Beamforming is typically 1RF BF weight vector per polarization: a single "Cross-Pol Beam" 2 TXRUs, Single User MIMO only Baseband Precoding Options: None (rank 2 all the time) CSI-RS based (RI/PMI/CQI) SRS-based (RI/CQI) 	 Combination of RF beamforming and digital precoding at baseband RF Beamforming is typically 1RF BF weight vector per polarization per panel: One "Cross-Pol Beam" per sub-panel Number of TXRUs = 2 x # of panels Baseband Precoding Options: CSI-RS based (RI/PMI/CQI) SRS-based (RI/CQI) SU- and MU-MIMO (typically one UE per Cross-Pol Beam) 		
SU-MIMO ↓↓↓↓↓ ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓	SU-MIMO MU-MIMO 4 UES Max, 2 ports/UE 1 UE at a time 8 Ports/UE in this example 1 1 S Rank s 8 (UE limit) MU-MIMO 4 UES Max, 2 ports/UE 1 S TXRUS at gNB 0 Up to 4 UEs at a time 1 S Rank s 2 per UE		

Some radio performance trends

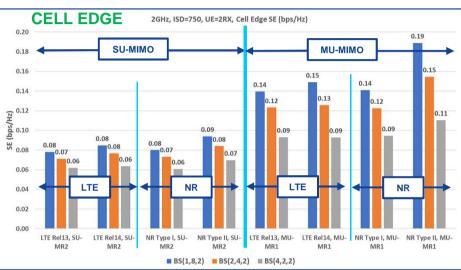

Downlink Massive MIMO: NR vs LTE: 16 and 32 TXRUs - Case Study

LTE:

- Rel-13 Codebook
 - 16 Ports and 32 Ports, Maximum Rank = 8
 - (32 ports=Rel-13 extension CB approved in Rel-14)
- Rel-14 codebook (Advanced CSI CB)
 - 16 Ports and 32 Ports, Maximum Rank = 2


NR:

- NR Codebook Type I
 - 16 Ports and 32 Ports, Maximum Rank = 8
- NR Codebook Type II
 - 16 Ports and 32 Ports, Maximum Rank = 2


28 © 2020 Nokia

	8 columns	4 colum	ins	2 columns
Physical Array Structures	(B.B.2) 128	(8.4.2)		(6.2.2) 32 X X X X X X X X X X X X X X X
Logical Configurations	 X × × × × × × 16= (1,8,2) × × × × × × × × × × × × × × × × × × × × × 32=(2,8,2) 	16 (2,4,2) 32 (4,4,2) ★★★★ ★★★★ ★★★★ ★★★★ ★★★ ★ ★★★ ★ ★ ★		XX 32 XX (8,2,2) XX X XX X

LTE vs NR: DL Codebook Performance at 2GHz (full buffer traffic)

- Slight gain from Rel-13 to Rel-14: 10%
- Bigger gain from NR Type I to NR Type II: 10-20%
- NR Type I CB performs similarly to LTE Rel-13 CB
- NR Type II CB outperforms LTE Rel-13, LTE Rel-14, NR Type I <u>MU-MIMO</u>:
- Large gain over SU-MIMO for all codebooks
- LTE Rel-13 CB and Rel-14 CB and NR Type I CB all perform similarly
- NR Type II CB provides significant gain over other CBs
 - 29 © 2020 Nokia

Array Configuration:

• The wide array significantly outperforms the other array configurations in mean and cell edge.

NR vs LTE:

- NR Type II CB significantly outperforms LTE Rel-13, LTE Rel-14, NR Type I CBs with MU-MIMO
- Large gains with the NR Type II CB and MU-MIMO
- Mean and Cell Edge show similar trends

Summary

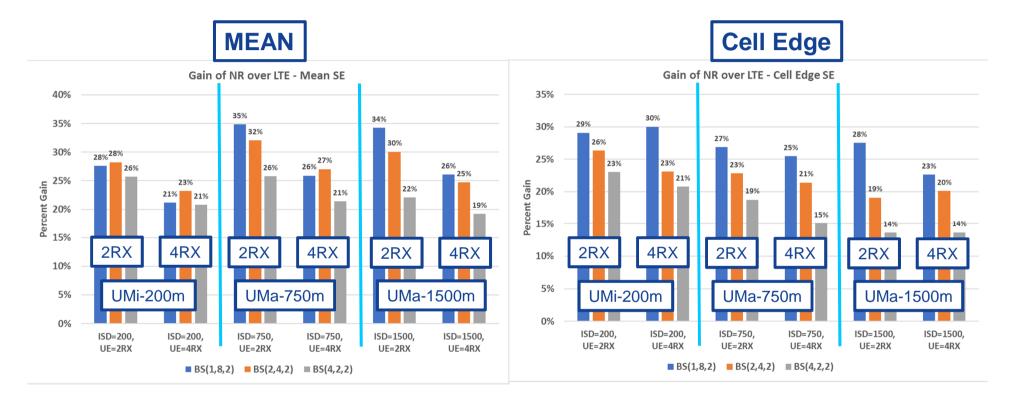
- NR-MIMO enables a beam-based air-interface for supporting both sub-6GHz and mmWave deployments with arbitrary array configurations
- NR-MIMO provides improvements in performance, efficiency, scalability, and flexibility over LTE-FD-MIMO
 - Beam Management new feature over LTE
 - Type II CSI codebook significant improvements over LTE codebooks
 - CSI acquisition framework for enhanced scalability and flexibility
 - Support for UE beamforming on UL
- Lots of evolutions planned in 3GPP R17 and R18, including:
 - Support of higher users mobility
 - UL overhead reduction
 - Improved support of multiple TRP & CoMP

Copyright and confidentiality

The contents of this document are proprietary and confidential property of Nokia. This document is provided subject to confidentiality obligations of the applicable agreement(s).

This document is intended for use of Nokia's customers and collaborators only for the purpose for which this document is submitted by Nokia. No part of this document may be reproduced or made available to the public or to any third party in any form or means without the prior written permission of Nokia. This document is to be used by properly trained professional personnel. Any use of the contents in this document is limited strictly to the use(s) specifically created in the applicable agreement(s) under which the document is submitted. The user of this document may voluntarily provide suggestions, comments or other feedback to Nokia in respect of the contents of this document ("Feedback"). Such Feedback may be used in Nokia products and related specifications or other documentation. Accordingly, if the user of this document gives Nokia Feedback on the contents of this document, Nokia may freely use, disclose, reproduce, license, distribute and otherwise commercialize the feedback in any Nokia product, technology, service, specification or other documentation. make changes and improvements to any of the products and/or services described in this document or withdraw this document at any time without prior notice.

The contents of this document are provided "as is". Except as required by applicable law, no warranties of any kind, either express or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose, are made in relation to the accuracy, reliability or contents of this document. NOKIA SHALL NOT BE RESPONSIBLE IN ANY EVENT FOR ERRORS IN THIS DOCUMENT or for any loss of data or income or any special, incidental, consequential, indirect or direct damages howsoever caused, that might arise from the use of this document or any contents of this document.


This document and the product(s) it describes are protected by copyright according to the applicable laws.

Nokia is a registered trademark of Nokia Corporation. Other product and company names mentioned herein may be trademarks or trade names of their respective owners.

Nokia operates a policy of ongoing development. Nokia reserves the right to

32 © 2020 Nokia

NOKIA

Gain of NR over LTE

• Gain of NR over LTE is roughly 19-35% in Mean SE, 14%-30% in cell edge (Full Buffer)

NOKIA

33 © 2020 Nokia