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Introduction 
Europe targets to develop low-carbon and energy efficient technologies through the 2020 roadmap. On the other hand, 

forecast on ICT industry states an exponential increase in data traffic going through wireless cellular networks. A dense 

deployment of small cells (SCs) is necessary to satisfy the future traffic requirements, which results in a fast increase of 

energy consumption with more challenging operational costs for the mobile industry. Hence, the wireless community has a 

tremendous interest for improving the energy efficiency (EE) at system level and there is a large effort for finding 

innovative solutions in order to improve the network sustainability. Current activities in the domain of the green wireless 

networks are mainly focusing on four research axes [1]: the definition of models and tools to evaluate the EE of current 

Radio Access Network (RAN) and backhaul (BH), the investigation of new adaptive hardware solutions, the design of 

innovative multi-layer architectures based on dense SCs deployment, and the proposal of flexible management schemes 

that adapt the network parameters with respect to service load variations.  

Discontinuous transmission (cell DTX) is a well-known solution to improve the network EE by dynamically deactivating 

most of the eNB hardware components when data is absent in a given transmission time interval [2]. Cell DTX jointly 

combined with buffering and cooperative transmissions can achieve additional gains by exploiting spatial diversity and the 

energy-delay trade-off [3]. More recently, we have shown that by deploying a SDN-like controller, it is possible to 

orchestrate both the SCs and the corresponding BH facilities, which have a large impact on the overall network energy 

consumption [4]. However, in this context, spikes of interference have been observed when two neighboring SCs are 

activated simultaneously, and large packet error rate losses can be perceived in scenarios characterized by high data rate 

requirements.  

Therefore, in this study, we present an architecture for an Inter-cell Interference Coordination (ICIC) controller to manage 

backhaul-aware SC DTX in dense heterogeneous wireless networks. 

This paper is organized as follows: in the first section the need for joint RAN and backhaul optimization mechanisms is 

discussed. Afterwards, the proposed ICIC framework for Backhaul-aware cell DTX is presented in Section 2. In Section 3 

we introduce the used reinforcement learning mechanisms. In Section 4, we provide more detail on the architecture of the 

proposed scheme. Finally, in Section 5, we show preliminary results that confirm the advantages of our solution. 

 
Figure 1. Small-cell and associated microwave BH power consumption [5]. 

 

1. Joint RAN/BH Network Optimization 
To enable massive SC deployment in 5G networks, wireless BH gains more and more interest from operators.  

In fact, SCs may need to be deployed where it is either difficult or too expensive to deploy fixed broadband or line-of-sight-

based microwave solutions for BH. Wireless BH is flexible and cost-efficient but cannot provide ultra-broadband and low 

latency transmission as optical fibre could do. Therefore, the BH becomes a critical element of the infrastructure since the 

17,00

18,00

19,00

20,00

21,00

22,00

23,00

24,00

0 10 20 30 40 50 60 70 80 90 100

Sm
al

l C
e

ll 
P

o
w

e
r 

C
o

n
su

m
p

ti
o

n
 

[W
]

Small cell RF output power [%]

0

20

40

60

80

100

120

140

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

B
H

 P
o

w
e

r 
C

o
n

su
m

p
ti

o
n

 [
W

]

Small cell RF output power [%]

Journées scientifiques 15/16 mars 2016 URSI-France

213



performance of a conventional RAN architecture is affected by the BH capacity and latency, which both depend on the 

selected technology and the topology used for connecting SCs.  

The capacity of the transport network largely affects the amount of signalling information that can be exchanged to enable 

coordination in PHY/MAC functionalities (such as ICIC). Moreover, BH technologies such as DSL or microwave can also 

introduce bottlenecks to the end-user throughput. Additionally, the latency of the BH affects the CSI/CQI reliability. 

Therefore, interference management schemes implemented through centralised transmission and reception schemes or 

coordinated scheduling may not lead to notable gains when the transport network induces high latencies. In the same way, 

high BH latency increases handover preparation time, which may lead to an increasing handover failure rate. 

Finally, Figure 1 compares the power consumption at a SC and at the associated microwave BH with respect to the SC 

output RF power [5]. It confirms that the SC power consumption cannot be the only aspect considered when assessing or 

optimizing the network EE. This analysis motivates the definition of future management solutions that consider jointly the 

impact of the SC and BH on the overall system performance. 

 

2. ICIC framework for Backhaul-aware cell DTX 

Figure 2 describes the proposed architecture to achieve reliable communications when implementing backhaul-aware small 

cell DTX. A network controller is in charge of managing jointly the activity of the BH and SC networks and to dynamically 

(at frame level) adapt their duty cycle to the momentary cell load and latency requirements of the ongoing services. 

Additionally, the network controller exploits information on the inter-cell interference to coordinate the activation of 

neighbouring small cells to improve the Quality of Service (QoS). Such a smart orchestration also reduces the packet 

retransmissions, which further enhances the system EE.  

Finally, in the proposed architecture we deploy a backhaul aggregation node, which receives the data from the core network 

and stores it in a dedicated buffer. When required, it transfers the data to the SC through a microwave BH link. Thereafter, 

the activated SC will autonomously manage available radio resources to transmit the received data towards the associated 

users. It is worth to underline that the BH latency has to be taken into account in order to avoid additional packet loss. 

The design of the network controller has multiple challenges: first, due to the stochastic environment (fast fading, 

interference, and packet arrival), it is not possible to describe the controller as a deterministic optimization problem. 

Second, due the problem complexity, the controller cannot provide simultaneously the coordination of a large set of small 

cells. Finally, it is necessary to define how to reliably capture the inter-cell interference impact without requiring 

continuous activation of the small cells. 

To deal with these challenges, we propose a controller based on Fuzzy Q-learning (FQL), which exploits 1) the Q-learning 

capabilities of finding an optimal controller in a stochastic environment without requiring a priori models on the behaviour 

of the stochastic variables and 2) the fuzzy logic, which enables to simplify the description of the system state and actions. 

With FQL the network controller targets to learn, by interacting with the radio environment, the policy that maximizes a 

multi-objective reward function, which takes into account the SC and BH power consumption and the packet losses due to 

the service requirements and the inter-cell interference, leading to notable improvements in terms of EE and QoS. 

 

 
Figure 2. Framework of the proposed ICIC for Backhaul-aware Small Cell DTX. 

 

3. Preliminary on Reinforcement Learning 
Machine learning, and more precisely reinforcement learning, represents a powerful tool to operate a whole small cell 

network in the most efficient way. In fact, the latter acquires the capability to dynamically optimize itself to meet the 

requirements in terms of Quality of Service (QoS) as well as optimizing the energy consumption. The learning process is 

achieved through continuous interaction with the environment to enable dynamic reconfiguration when needed. Moreover, 

when preliminary knowledge of the environment behavior is available or cooperation among small cell is feasible, the 

learning phase is accelerated.  
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To solve the problem of learning from interaction, reinforcement learning relies on the agent-environment framework 

illustrated in Figure 3. The latter is composed of an agent that corresponds to the decision-maker and an environment that 

represents all the factors that likely influence the decision making.  

 
Figure 3. The agent-environment interaction in reinforcement learning [6]. 

 

 

At each time step 𝑡, the agent receives a representation of the environment's state �⃗�𝒕 ∈ 𝑆, where 𝑆 is the set of possible 

states, and selects an action at ∈ 𝐴 accordingly, where 𝐴 is the set of possible actions. As a consequence of its action, the 

agent receives in the next time step a numerical cost 𝑐 ∈ 𝐶, and perceives a new state �⃗�𝒕+𝟏. 

Each pair state-action can be defined by its Q-value Q(�⃗�, a), which represents the expected total discounted cost counting 

from the state-action pair (�⃗�, a), over an infinite time 

 

Q(�⃗�, a) = E{∑ 𝛾𝑡𝑐(�⃗�𝒕, at)
∞
𝑡=0  | �⃗�0 = �⃗� , a0 = a }   (1) 

 

where γ ∈ [0,1] is the discount rate that determines the current value of future costs. In other words, the Q-value estimates 

in the long-term how good it is for the agent to choose a particular action in a given state.   

 

During the learning process, the agent visits a finite number of states and collects the cost each time an action is taken. The 

objective is to find an optimal policy, i.e., a state-action mapping that minimizes the expected cumulative cost of the agent 

when visiting the state space. More specifically, in the Q-learning algorithm, the Q-values are first arbitrarily initialized, 

and then the optimal Q-values are computed in a recursive method. In each iteration, after the execution of an action a in a 

state �⃗�, the agent receives an immediate cost, perceives a new state 𝐬′⃗⃗⃗, and updates the value of Q(�⃗�, a) as:  

 

Q(�⃗�, a)  ←  Q(�⃗�, a) + 𝛼 ∙ ΔQ(�⃗�, a) 

 

ΔQ(�⃗�, a) = c(�⃗�, a) + 𝛾 min
𝑎′∈𝐴

Q (𝐬′⃗⃗⃗, a′) − Q(�⃗�, a) 

 

where α ∈ [0,1] is the learning rate, a′ is the next state optimal action, and Q (𝐬′⃗⃗⃗, a′) is the next state Q-value. 

Watkins et al. [7] have proven that if each admissible state-action pair is visited infinitely often and the learning rate is 

decreased in a suitable way, then the Q-value will converge to an intermediate minimal Q∗(�⃗�, a) with probability 1. 

Therefore, we can determine the optimal action a∗ with respect to the current state such that Q∗(�⃗�, a) is minimal 

 

a∗ = argmin
𝑎∈𝐴

Q∗(�⃗�, a) (2) 

 

Finally, the optimal state-action pairs are stored into a look-up-table, which is used for the optimal control of the system. 

In general, it is difficult to define appropriate state and action spaces for RL problems. The discretization of the state space 

has to be rather fine to cover all possibly relevant situations and there can also be a wide variety of actions to choose from. 

As a consequence, there exists a combinatorial explosion problem when trying to explore all possible actions from all 

possible states.  

To solve dimensionality problems, the fuzzy inference system (FIS) is a suitable candidate. The FIS relies on fuzzy logic in 

which, unlike standard conditional logic, the truth of any statement is a matter of degree. In other words, the statement "x is 

a member of X" is not necessary true of false and the degree to which any fuzzy statement is true is denoted by a value 

between 0 and 1. Additionally, each object is defined as a linguistic variable, that is, a variable whose values are words or 
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sentences such as "high" and "low" [8].  Each linguistic variable xi is associated with a term set T(xi) that includes all the 

fuzzy sets corresponding to the names of the linguistic values of xi.  

 

Let's consider an input state vector x, represented by L fuzzy linguistic variables; then, by denoting the set of state vectors 

of L linguistic variables as 𝑆̅ = {�̅�1, … , �̅�𝑁}, and for each state �̅�𝑗, the set of actions 𝐴 = {𝑎1, … , 𝑎𝐾}, the fuzzy inference 

rule 𝑅𝑗 that associates state vectors with actions have the following form:  

 

𝑅𝑗 : IF x is in �̅�𝑗 THEN the action is 𝑎𝑠. 

 

Generally, the FIS relies on a priori or expert knowledge to set the correct control action 𝑎𝑠 for a given rule 𝑅𝑗. However, 

this is not efficient in case of many complex problems. 

For this reason, we consider the Fuzzy Q-Learning (FQL) algorithm, which consists on tuning the FIS through Q-Learning. 

The rules in FQL are defined as follow: 

 

𝑅𝑗 : IF x is in �̅�𝑗 THEN action 𝑎1 with 𝑞(�̅�𝑗 , 𝑎1), 

OR action 𝑎2 with 𝑞(�̅�𝑗 , 𝑎2), 

⋯ ⋯ ⋯ 

OR action 𝑎𝑁 with 𝑞(�̅�𝑗, 𝑎𝑁), 

 

where 𝑞(�̅�𝑗 , 𝑎𝑖) is the fuzzy Q-value of the state-action pair (�̅�𝑗, 𝑎𝑖), 1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑖 ≤ 𝐾. For more information on FQL, 

please refer to our previous work [4]. 

 

4. Small Cell Controller based on Reinforcement Learning 
 

Let 𝑆 be a finite set referred to as the small cell state space and defined as 

𝑆 = 𝑄 × 𝐶 × 𝑈𝐸 × 𝐿 × 𝐼, where 𝑄, 𝐶, 𝑈𝐸, 𝐿, and 𝐼 are the state sets that describe the buffer state, the cell capacity, the 

number of active UEs per SC, the backhaul latency, and the Interference level, respectively. 

In particular, at each time step, a small cell queue is described through the couple 𝒒 = (𝒕, 𝒏)  ∈ 𝑄, where the vectors 𝒏 and 

𝒕 indicate the size (in bits) and the Time To Live (TTL) of the packets in the queue, respectively. Moreover, 𝑐 ∈ 𝐶, 𝑢 ∈
𝑈𝐸, 𝑑 ∈ 𝐷, and 𝑖 ∈ 𝐼 describe the expected number of successfully tranmitted bits in one transmission time-slot, the 

number of served UEs, the BH link latency, and the interference level estimate. 

Therefore, each small cell state can be represented through the state vector 𝒔 = (𝒒, 𝑐, 𝑢, 𝑑, 𝑖). Note the variable u may vary 

in a long time scale (seconds or minutes), d is rather static since it depends mainly on the BH technology, and the other 

variables change in a short time scale (milliseconds). 

 

At each iteration, the network controller selects, according to the small cell state, an action a∗ ∈ 𝐴 = {0,1}, where a∗ = 0 

corresponds to set the small cell and the associated BH link in sleep mode, while a∗ = 1 indicates that the small cell is 

activated and 𝑏 = min(𝑐, ∑ 𝑛𝑗
|𝑛|
𝑗=1 ) bits are transferred from the aggregation node to the small cell through the wireless BH 

(see Figure 2). 

 

Since we aim at optimizing the system in terms of the energy efficiency and QoS, we define the cost associated with each 

state-action pair (see eq. (1)) as 

c(𝒔, a) = 𝑃(𝒔, a) − 𝛽 ∙ (𝑏(𝒔, a) − 𝑙(𝒔, a)) (3) 

 

where 𝑃(𝒔, a) describes the sum of the BH and small cell power consumption, 𝛽 is a weighting factor that prioritizes 

between the power consumption and the QoS, and 𝑙(𝒔, a) indicates the packet lost due to latency constraints and to the 

perceived interference. For more detail on the power consumption models, please refer to our previous work [4]. 

 

We now describe the implementation of the proposed algorithm in a SDN-empowered architecture for 5G wireless 

networks. Figure 4 shows the Message Sequence Chart (MSC) supporting the proposed Fuzzy Q-Learning Network 

Controller. Four entities are included in this figure: the network controller is responsible to control the operational states of 

small cells and BH nodes. Functions such as radio resource management and signal processing are still locally implemented 

at the SC. This functional split supports the proposed control functions also in environments characterized by high-latency 

low-capacity BH. 

The aggregation node is responsible for aggregation, storing, and forwarding of data towards the associated SCs through 

the wireless BH according to a first in, first out policy. The FQL Network Controller relies on information concerning both 

the RAN and the BH network. Here we assume that the SCs periodically signal to the network controller the number of 

associated UEs, the momentary cell capacity and interference level  (step 1 in Figure 4), which is used to decide the correct 

amount of data that can be backhauled. The BH latency also affects the packet TTL: the higher the latency, the lower the 

time a packet can remain in the queue before being transmitted. This information is captured at the controller through 

measurements done by BH nodes (step 2). Based on this feedback and the buffer information received by the aggregation 

node (step 3), each ms, the controller determine the activity at small cells and associated BH links (step 4). When an 

activation is required, a control information is sent to BH nodes (step 5) to enable successful data delivery to the activated 

SCs. Finally, a control signal is sent by the network controller to the aggregation node and the underlying small cells (step 
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6). According to this message, data related to deactivated SCs is stored at the aggregation node (step 7) while the activated 

SCs receive the data traffic (step 8) to be forwarded to their active UEs. 

 
 

Figure 4. MSC for the proposed ICIC for Backhaul-aware Small Cell DTX 

 

5. Preliminary Results 
In this section, we evaluate the proposed FQL small cell controller through numerical results. A system-level simulator is 

used to mimic a wide area coverage scenario, where SCs are densely deployed (1 small cell per 50m2). Near Real Time 

Video (NRTV) traffic (with latency constraints equal to 100 ms) is simulated for the small cell UEs. Results are averaged 

over 50 independent runs that simulate 10 seconds of network activity. Other key simulation parameters are detailed in 

TABLE I.  

Figure 5 shows preliminary results, in terms of packet error rate, obtained by using the proposed interference-aware DTX 

controller based on fuzzy Q-learning for different rate requirements. This approach is compared with the solution [4] that 

does not consider the estimate of the interference in the state space and its impact in the cost function (see eq. (3)).  These 

results confirm that the proposed solution may greatly enhance the energy efficiency of future wireless networks with a 

limited impact on the end user QoS. Avoiding small cell activation and transmissions in high interference regimes, the 

proposed solution limit retransmissions, which from one side have a negative effect on the system energy efficiency and on 

the other side increase the overall number of concurrent (re)transmissions that further increase the overall network 

interference. 

 

 
Figure 5. CDF of the Packet Error Rate for different QoS target rate with and without interference awareness 

mechanism. 

 

 

 

Journées scientifiques 15/16 mars 2016 URSI-France

217



 

TABLE I.  Main Simulation Parameters 

Parameter Value  Parameter Value 

Cellular layout Wide Area Coverage  Carrier frequency 3.5 GHz 

SCeNBs density 1/50 m2  SCeNB Tx power 30 dBmW 

UE dropping 
5 UEs uniformly distributed per 

small cell 
 

Shadowing distribution Log-normal 

Min. dist. SC-UE 10 m  SCeNB antenna gain 0 dB 

Small cell path loss ITU Umi (Table B.1.2.1-1 [9])  Thermal noise density N0=-174 dBm/Hz 

 

 

6. Conclusion 
In this paper, we have proposed an architecture based on a reinforcement learning framework to manage the activity of 

concurrent small cell to limit the network energy consumption without reducing the system QoS. Preliminary numerical 

results confirm that the proposed Fuzzy Q-Learning policy enables notable performance improvements with respect to the 

baseline approach. Future studies will focus on finalizing the performance evaluation, modelling the impact of the BH 

networks, and compare our solution to well-known ICIC schemes. 
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