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Abstract 
 

This paper proposes an index based learning algorithm for the opportunistic spectrum access (OSA) scenario modeled as 

a Markov multi-armed bandit (MAB) problem. The proposed algorithm selects a channel for transmission which is 

optimal not only in terms of data rate, but in terms of quality as well, i.e. signal to noise ratio (SNR). It allows secondary 

users (SUs) to give appropriate weight to their desired criterion, such as channel quality, which lead to reliable 

transmission with lower power, and data rate, by selecting two distinguishable exploration coefficients. In cognitive radio 

context, we numerically compare the proposed policy with an existing UCB1 and also show that it outperforms 

traditional UCB1 in terms of transmission power requirement for SU. 

 

1. Introduction 
Cognitive radio (CR) enables to get access to the underutilized spectrum when it is not occupied by a licensed user and 

thus opens new doors in spectrum sharing for communication. In OSA context, primary users (PUs) are the licensed 

users who buy the right to use spectrum for certain time. While secondary user (SU) is the unlicensed user who could be 

allowed to use the spectrum for communication when no PUs is using it [1]. Along with the other problems, energy 

efficiency also plays an important role in a final successful implementation of CR.  

The core of OSA problem being to learn which channels are the best in terms of chosen criterions, e.g. availability and 

quality, recent works have modeled the spectrum learning process with multi-armed bandit (MAB) framework [1,2,3]. 

The energy efficiency is just as much dependent on channel propagation conditions as the spectral efficiency and hence it 

is necessary to adapt the system to the changing environment. Fig. 1 illustrates the fact that some channels are more 

available than others, due to the traffic load of PUs, and some of them offer better quality for a wireless transmission in 

terms of signal to noise ratio (SNR), due to the propagation conditions, thus may potentially support a reliable 

transmission with lower transmit power. 

Recently, MAB has been successfully used to model OSA scenario [1,2,3]. In MAB framework, an SU knows nothing a 

priori about the statistics of the channels, i.e., has no idea of how good or bad selected channels are in term of received 

Fig. 1. Occupancy and channel condition considered for secondary user 
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power or signal to noise ratio (SNR), and what data rate it may get from each channel. The data rate and quality of each 

channel could be learnt by exploration. The objective is to handle the exploration vs exploitation dilemma, defined as 

exploiting the best channel while simultaneously collecting the information about the best channel. In OSA, decision to 

transmit or not is done by simply characterizing a channel as a free or occupied, whereas the choice of the channel 

allocation should not be only done from a occupancy point of view, e.g. free or occupied but also on actual condition as 

shown in Fig. 1. The goal is to design a learning approach which searches for a spectrum holes within a given set and 

also achieve reliable transmission with lower power. Several works have dealt with the introduction of quality 

information in reinforcement learning schemes for spectrum allocation, but most of the approaches suffer from a long 

convergence time [4,5,6,7]. 

 

This paper presents an algorithm which is specifically designed to solve spectrum learning problem with significant 

reduction in the energy consumption of an SU. As all reinforcement learning schemes, proposed policy observes the 

availability of channel by sensing, which can be the output of the energy detector in case of CR. The rest of the paper is 

organized as follows. In Section II, we present cognitive engine and formulate the Markov MAB problem as a CR 

learning process. In Section III, we present a learning algorithm based on the local channel quality. Section IV presents 

the numerical results, verifying the validity and efficiency of the proposed policy. Finally, Section V concludes the paper. 

 

2. Problem Formulation 
CR equipment should normally consists in three additional functionalities compared to traditional software defined radio, 

which are spectrum sensing, decision making and learning engine [1]. In OSA scenario, CR first senses the spectrum and 

decision making engine decides to transmit or not based on the output of the spectrum sensing. Finally, the goal of 

learning engine is to predict the channel to sense for the next time instant. The selection of the next channel for 

transmission is not decided with the help of respective channels availability statistics only, but their quality is also taken 

into consideration. Learning engine can be successfully modeled as a Markov MAB problem. 

 

We consider a Markov MAB framework with a single SU and 𝑖 ∈ {1, … , 𝐾} independent channels. The reward generated 

by state 𝑞, 𝑞 ∈ 𝑆𝑖, of an arm 𝑖 is denoted by 𝑟𝑞
𝑖(𝑡) = 𝑆𝑖(𝑡), where 𝑆𝑖(𝑡) denotes observed state at time 𝑡 from channel 𝑖. 

The irreducible and aperiodic Markov chain with finite state space 𝑆𝑖 is used for modeling the 𝑖 −th arm for Markov 

MAB problem. The transition probability matrix of an arm 𝑖 is denoted by 𝑃𝑖 = 𝑃𝑘,𝑙
𝑖 , 𝑘, 𝑙 ∈ {𝑞0, 𝑞1} and 𝑞0, 𝑞1 ∈ 𝑆𝑖, where 

𝑞0 and 𝑞1 are the Markov states of an arm 𝑖, i.e. occupied and free respectively. The arms are assumed to be mutually 

independent from each other. The stationary distribution  𝜋𝑖 of the Markov chain is defined as 𝜋𝑞
𝑖 (𝑡) = 𝜋𝑞

𝑖 , ∀𝑡 and 

𝜋𝑖 = [𝜋𝑞0
𝑖 , 𝜋𝑞1

𝑖 ] = [
𝑝𝑞1𝑞0

𝑖

𝑝𝑞1𝑞0
𝑖 + 𝑝𝑞0𝑞1

𝑖
,

𝑝𝑞0𝑞1
𝑖

𝑝𝑞1𝑞0
𝑖 + 𝑝𝑞0𝑞1

𝑖
]. 

 

Furthermore, this work considers another criterion for channel selection, which is the instantaneous quality of the 

channels. We assume that quality of channel within a given state  𝑞 is stationary in the wide sense, meaning that its 

statistical properties, i.e. first and second moment, are not evolving over time, but the instantaneous quality 𝑅𝑞
𝑖 (𝑡) of the 

𝑖 −th channel varies. The learning policy decides an arm 𝑖 to play at each time step 𝑡, based on a previously observed 

state 𝑞 and quality observation 𝑅𝑞
𝑖 . The mean reward 𝜇𝑖 of an arm 𝑖 under stationary distribution 𝜋𝑞

𝑖  is given by:  𝜇𝑖 =

 ∑ 𝑟𝑞
𝑖𝑅𝑞

𝑖 𝜋𝑞
𝑖

𝑞∈𝑆𝑖 . 

 

Channel with the highest mean reward 𝜇∗ is called an optimal channel, and its quality is denoted as 𝑅𝑞
∗ . Channel whose 

mean reward is strictly less than 𝜇∗ is referred as a suboptimal channels. 

 

3. Channel Selection Policy 
In this section, we propose a policy for CR learning. The policy aims to find a channel which is optimal in terms of data 

rate and its quality, which leads to reliable transmission with lower power for CR. Proposed policy, as any other 

reinforcement learning algorithm, learns from the observations acquired by sensing the channels without considering any 

a priori statistical information about the channels. Our first contribution is the algorithm represented as a flow chart in 

Fig. 2. 

 

If a channel is never sensed, then its bound is infinite and this is why all channels are sensed at least once initially. After 

𝑛 > 𝐾 iterations as seen in Figure 2, proposed policy updates the index 𝐵𝑖(𝑛, 𝑇𝑖(𝑛), where 𝑇𝑖(𝑛) is the number of time 

channel 𝑖 has been sensed up to time 𝑛. At each iteration, policy returns the channel index 𝑖 which is maximum.  

 

The policy index is defined as  

 

𝐵𝑖(𝑛, 𝑇𝑖(𝑛))  = 𝑆̅𝑖(𝑇𝑖(𝑛))  − 𝑄𝑖(𝑛, 𝑇𝑖(𝑛))  +  𝐴𝑖(𝑛, 𝑇𝑖(𝑛)), 
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with 𝑆̅𝑖(𝑇𝑖(𝑛))  term indicates the exploitation contribution, and 𝑄𝑖(𝑛, 𝑇𝑖(𝑛))  and 𝐴𝑖(𝑛, 𝑇𝑖(𝑛))  represent exploration 

contributions. The index 𝐵𝑖(𝑛, 𝑇𝑖(𝑛)) comprises three terms; the first, 𝑆̅𝑖(𝑇𝑖(𝑛)), is the empirical mean of the observed 

Markov states of channel 𝑖 up to time 𝑛 and it is defined as 

𝑆̅𝑖 (𝑇𝑖(𝑛)) =  
𝑆𝑖(1) + 𝑆𝑖(2) + ⋯ + 𝑆𝑖(𝑇𝑖(𝑛))

𝑇𝑖(𝑛)
, ∀𝑖 

where 𝑆𝑖(𝑇𝑖(𝑛)) is the Markov state, i.e. occupied or free, of a channel 𝑖 at time 𝑛. Second, 𝑄𝑖(𝑛, 𝑇𝑖(𝑛)) represents 

channel quality term and is estimated by the use of the observed quality information 𝑅𝑞
𝑖 (𝑛). Finally, if the scheme leads 

to a channel which is in the occupied state, then the third bias term 𝐴𝑖(𝑛, 𝑇𝑖(𝑛)) forces to explore the other channels.  

 

 

The key parameter of the proposed policy is 𝑄𝑖(𝑛, 𝑇𝑖(𝑛)) and is defined as 

𝑄𝑖(𝑛, 𝑇𝑖(𝑛))  =
𝛽 𝑀𝑖(𝑛, 𝑇𝑖(𝑛)) ln 𝑛 

𝑇𝑖(𝑛)
   

where 

𝑀𝑖 (𝑛, 𝑇𝑖(𝑛)) =  𝐺𝑚𝑎𝑥
𝑞 (𝑛) −  𝐺𝑞

𝑖 (𝑇𝑖(𝑛)),   ∀ I, 

and 𝐺𝑞
𝑖 (𝑇𝑖(𝑛))  =  

1

𝑇𝑖(𝑛)
∑ 𝑅𝑞

𝑖 (𝑘)
𝑇𝑖(𝑛)
𝑘=1  denotes the empirical mean of quality observations 𝑅𝑞

𝑖  collected from channel 𝑖 in 

state 𝑞 , 𝐺𝑚𝑎𝑥
𝑞

(𝑛)  =  max
𝑖∈𝐾

𝐺𝑞
𝑖 (𝑇𝑖(𝑛))  is the maximum expected quality within the set of channels. Thanks to this 

formulation, the proposed policy selects a channel for transmission which has higher quality 𝐺𝑚𝑎𝑥
𝑞

(𝑛) up to time 𝑛 in 

state 𝑞. 

 

𝐴𝑖(𝑛, 𝑇𝑖(𝑛)) is a bias defined as 

𝐴𝑖 (𝑛, 𝑇𝑖(𝑛)) = √ 
𝛼 ln 𝑛

𝑇𝑖(𝑛)
 

In our algorithm, two coefficients come into play, i.e. 𝛼 and 𝛽, respectively defined as the exploration parameter for 

learning the data rate of the channels and the weight value for quality based learning.  

 

4. Numerical Analysis 
In this section, we analyze the performance of the proposed policy in OSA scenario. The number of channels is set to 6 

and simulation is performed over 100 runs to smooth the results. We use 10000 time instants for simulations in order to 

analyze the performances. We remind that 𝑞0 and 𝑞1 stand for the states occupied and free respectively. QPSK signaling 

are assumed to be used for PU signals. Moreover, each channel 𝑖 has different quality levels, i.e. signal to noise ratio 

(SNR), which could be learnt by exploration of that channel.  

 

The primary network transition probabilities 𝑃𝑖  for each channel is selected arbitrary and is given in Table 1. Whereas, 

mean availability 𝜋𝑞1
𝑖  is estimated with the help of transition probabilities 𝑃𝑖  of each channel. The channel quality is 

defined with the received SNR as shown in Table 1. The SU’s transmit power required to achieve specific BER 𝑃𝑒 is also 

given in Table 1 under certain hypothesis that are not necessary to detail as only relative value is worth in our study. Let, 

Fig. 2. Proposed Machine Learning Algorithm 
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optimal channel is the one which requires lower transmit power for SU from all the channels and has highest availability 

percentage. 

 

Fig 3. presents the percentage of opportunities exploited which is defined as the ratio between the number of times a 

policy senses an available channel and the total number of time slots. We compare the performance of the proposed 

policy with baseline index policy UCB1, as proposed in [8]. As seen in Fig. 3, UCB1 gets the higher number of 

opportunities to transmit since UCB1 only looks for the channel with the highest availability. Whereas, the proposed 

policy is able to find lower percentage of opportunities, since it always senses a channel which is referred as an optimal 

channel both in terms of availability and quality, leading to lower transmission power requirement for SU. 

 

 

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 (𝑖) 1 2 3 4 5 6 

𝑃𝑞0𝑞1
𝑖  0.8 0.9 0.6 0.4 0.3 0.9 

𝑃𝑞1𝑞0
𝑖  0.2 0.22 0.3 0.65 0.5 0.18 

𝜋𝑞1
𝑖  0.80 0.80 0.66 0.38 0.37 0.83 

Received SNR (dB) 2 10 3 1 3 6 

𝑃𝑇  𝑑𝐵𝑚 (for 𝑃𝑒 = 10−4) 28 20 27 29 27 24 

𝑃𝑇  𝑑𝐵𝑚 (for 𝑃𝑒 = 10−3) 26 18 25 27 25 22 

 

 

Fig. 4 shows the average transmission power required by SU to achieve a specific BER of 10−3, Fig. 4(a), and a BER 

about 10−4, Fig. 4(b), using the proposed policy and UCB1. Our algorithm requires much lower transmit power 𝑃𝑇  for 

SU compared to UCB1. For instance, the average transmission power 𝑃𝑇  required by an SU using the proposed policy is 

about 100 mW lower than UCB1 to achieve a BER equals to 10−4. 

 

Both algorithms explore different channels initially, thus the average transmission power 𝑃𝑇  varies significantly as shown 

in Fig. 4(a) during the beginning of learning. Due to the introduction of the required 𝑃𝑇  inside the index calculation, the 

proposed policy is able to select an optimal channel. The ability to select a channel with 𝑃𝑇  suggests that the proposed 

policy could offer significant reduction in power consumption than traditional UCBs. As seen in Figs. 4(a), the proposed 

policy selects a channel (𝑖 =  2) which has lower 𝑃𝑇  and also offers sufficient enough data rate. Whereas, UCB1 policy 

selects a channel (𝑖 =  6) which provides data rate, but ignores the transmission power constraint.  

 

Fig 4(b) depicts the total power consumed by UCB1 and proposed policy to transmit 10000 frames with target BER 𝑃𝑒 =
10−4  on different channels. We can see that proposed policy consumes much lower power for transmission with 

predefined BER 𝑃𝑒 = 10−4, whereas, UCB1 consumes more power to continue transmission with desired BER, because 

UCB1 does not consider a channel quality to make a decision about next channel. To make a fair comparison, we 

calculate the SU’s power consumed to transmit a single bit using UCB1 policy and proposed policy. Numerical analysis 

states that SU with UCB1 policy consumes 112 %  more power compared to proposed policy to transmit a single bit with 

Fig. 3. Proposed policy and UCB1: Percentage of opportunities exploited 

Table 1. State Transition Probability, Mean Availability and SU transmit power required to achieve specific BER 
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desired BER 𝑃𝑒 = 10−4. The results shown in Fig. 3 and 4, suggest that our policy is able to learn from various channel 

characteristics, i.e. availability and a quality criterion, linked to the transmit power in this paper, in opposite to UCB1 that 

only takes into account channel availability for learning. It can also be shown that the proposed policy keeps the 

logarithmic behavior in regret which makes it as much as interesting as UCB1 to learn on channels. 

 

5. Conclusion 
In this work, a machine learning policy based on channel quality information and availability has been discussed for OSA 

scenario. The learning is done from the observations acquired by sensing the channels without considering any a priori 

statistical information about them. It allows decision making in a set of channels finding a tradeoff between the most 

available channels and channels offering good quality (which leads to a lower energy consumption for SU). Numerical 

analysis have stated that our policy and the classical UCB1 are able to find opportunities for transmissions, but our 

scheme much often selects an optimal channel in terms of quality, e.g. SNR, leading to a lower energy consumption for 

the SU.  
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