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Introduction 

 
In 5G networks, the number of connected devices, data rate and data volume per area, as well as the variety of QoS 

requirements, will attain unprecedented scales. The achievement of these goals will rely on new technologies and 

disruptive changes in network architecture and node design. Energy efficiency is believed to play a key role in 

complementing the 5G technologies and optimizing their deployment, dynamic configuration and management [1]. 

Within the framework of green communications and networks, especially for next-generation green cellular radio access 

networks, the GREAT (Green Cognitive Radio for Energy-Aware wireless communication Technologies evolution) 

initiative, a CominLabs Excellence Center (Laboratoire d'Excellence) and Université Européenne de Bretagne 

(UEB)project, has mainly addressed the fundamental issues of energy efficiency from various perspectives and angles, 

leveraging on cognitive techniques, at networking level as well as at thephysical layer level. 

Various cognitive green radio techniques have been utilized and verified to improve energy efficiency in different 

application scenarios. Particularly, representative learning algorithms and decision-making schemes (transfer learning, 

reinforcement learning, combined learning, entropy theory, etc.) [2] have been successfully employed to achieve energy 

saving under spectral/capacity requirements. 

In order to improve the balance of energy-efficiency and spectrum-efficiency, the fundamental characteristics of 

networking traffics have been investigated by taking into account the mobile users' behavior (mobility, 

location/position/density, social connection, living style, etc.), in various outdoor as well as indoor networking 

environments[3]. The various led theoretical analysis have been validated through implementation in the real world. As 

a case in point, we present in this work a Wi-Fi-based platform which implements two main functionalities: first, users 

clustering and second, base station (BS) & access points (AP) switchingon/off [4]. 

This paper is organized as follows: in the first section the concept of cognitivegreen radio is presented. In the second 

section we introduce our RSS-based clustering approach. The third section focuses on topology management under 

energy consumption constraint. The fourth section presents how these two different concepts were implemented in our 

Wi-Fi-based platform. 

 

1. The Cognitive Green Radio 
 

Cognitive Green Radio (CGR) is a Cognitive Radio which is aware of sustainable development and takes it as an 

additional constraint in the decision making function of the cognitive cycle [1]. The implementation of these new 

approaches and technologies will rely on advanced PHY/MAC techniques calling for a variety of coordination and 

cooperation strategies among the network elements. Furthermore, it is envisioned that future networks will be 

complemented by cognitive entities that exploit context information to optimizetheir performances and their energy-

efficiency. Such entities should be based on the cognitive cycle summarized in three key steps according to [1]:  

 Observe (Sense): It makes the context information available to the system. It relies on various kinds of 

available sensing means from the operating environment. 

 Decide (Learn, Plan and Decide): It implies various kinds of intelligence, including learning, planning, and 

decision making. 

 Act and Adapt: It corresponds to the dynamic configuration and management of the various network 

elements. 

 

We emphasize here that the space of context information is not restricted to spectrum availability, but can include any 

kind of information relevant to the decision making and adaptation steps of the cognitive cycle. One example of context 

information is location information, i.e. the locations of the users and connected devices. 
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In this paper, we propose the received signal strength (RSS) of connected devices as a kind of context information. Here 

a connected device refers to user equipment (UE) or any other kind of portable or non-portable device with wireless 

connectivity (e.g., smart grid components, metering units, sensors, etc.). 

 

2. RSS-Based Clustering 
 

Clustering is the task of partitioning a data set into several groups, called clusters, in such a way that the elements in the 

same cluster are more similar to each other than to those in other clusters. Thedetection of clusters adds intelligence to 

the network, and canenhance some energy efficient schemes at network level, suchas topology management, relaying, 

beamforming, offloading,and heterogeneous networks deployment. 

In the clustering problem considered here the spatial proximity of devices will reflect their similarity. One approach to 

find the clusters is to rely on the devices locations, i.e., their coordinates in a 2D or 3D Euclidean space. However, 

finding the locations for a large a number of devices, say hundreds or thousands, could incur high communication and 

computation costs, and the performance will depend on the location estimation accuracy. RSS-based clustering is 

enabled by the fact that two nearby devices have a high probability of measuring close RSS values with one BS. The 

clustering operation starts by collecting the RSS measurements made with the devices to a central processor, and 

associating an RSS vector to every device, where an entry of the vector is obtained with one BS or network node. Fig. 

1(a) shows an example of a matrix of RSS values collected in a Wi-Fi network [4]. Each row of this matrix represents 

the RSS vector for one device. Afterwards, a clustering algorithm is applied to the RSS vectors. The algorithm needs to 

solve the following problems: 

 Identifying the ‘clutter’ which is the set of isolated devices that do not have other devices in their nearby 

vicinity, as illustrated in Figure 1. 

 Finding the clusters for the remaining non-clutter devices. The number of clusters is not known in advance and 

also needs to be computed. 

 

The authors in [5] developed a non-parametric solution for clustering algorithm. The application of this solution to the 

RSS matrix of Fig. 1(a) yields the results shown in Fig. 1(b). 

 

 
Fig.1 (a) RSS matrix (in dBm) for 46 UEs obtained with 11 Wi-Fi access points. The UEs locations are plotted in Fig. 1(b). (b) Clutter detection and 

clustering result obtained by applying the non-parametric algorithm developed in [5] to the RSS matrix of Fig. 1(a). 

 

Fig.2 shows an example of the non-parametric clustering for 1-dimensional data points. We call ‘data point’ the RSS 

vector associated with a device. The non-parametric clustering assumes that the data points are randomly and 

independently generated according to a distribution function f, and the high density points belonging to clusters are 

those verifying 𝑓(data point) > 𝑐, where c is a given constant. The remaining data points correspond to the clutter. 

Since f is unknown, it is estimated using a non-parametric kernel-based method [5]. 𝑓 denotes the estimate of the 

distribution function f in Fig. 2. 
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Fig.2 Non-parametric clutter detection and clustering. The function 𝑓̂ is obtained by placing a Gaussian kernel at every data point. The value of 𝑓̂for 

the clutter is below the threshold. There are 2 clusters and 2 modes above the threshold [5]. 
 

 

A measurement campaign was conducted to evaluate the clustering performance in an indoor environment based on 

Wi-Fi technology. RSS measurements were collected by a PC placed on a moving trolley over a grid of points covering 

a big portion of the area of Figure 1(b). The rooms are separated by wooden and concrete walls, and the access points 

(APs) are placed on multiple floor levels. The simultaneous presence of several UEs is emulated by randomly drawing 

several points from the grid. To generate a cluster, a space zone is randomly selected, and then points are uniformly 

drawn from the gridpoints belonging to this zone. The clutter UEs are uniformly drawn after removing the grid points 

lying inside the selected cluster zones. The performance of classifying the UEs as clutter or belonging to clusters can be 

measured in terms of the probability of false alarm (PFA) which is the probability of wrongly classifying a clutter UE as 

belonging to a cluster, and the probability of detection (PD) which is the probability of correctly classifying a cluster 

UE. These probabilities are computed by averaging the outcomes of 100 trials, and are plotted in Figure 3. Figure 3(a) 

shows that PFA is increasing with the clutter density. When the number of used APs is high (i.e., 6 and 11 APs), the 

variation of PFA with the number of clusters was not much noticeable. This might be due to the fact that the RSS 

vectors have a higher dimension for a higher number of APs, making the clutter RSS vectors farther from the clusters 

ones. It was not noticed that PD varies with the clutter density, however it varies with the number of APs, and cluster 

size and density, as shown in Figure 3(a). Figure 3 reveals a good performance for a clutter density below 0.02UEs/m2 

and a cluster density of the order of 0.2 UEs/m2. 

For outdoor environments, a good performance based on simulations was obtained in [5] with appropriate clutter and 

cluster densities. Outdoor environments mainly differ from the indoor ones in that the shadowing correlation function 

decreases more slowly with the separating distance between the devices. 

 

  
Fig.3Performance of the classification of UEs as clutter or belonging to clusters for the indoor Wi-Fi experimentation. (a) Variation of PFA with the 

clutter density. (b) Variation of PD with the number of APs, cluster size and cluster density. 

 

3. Energy-Aware Network Topology Management 
 

Cellular networks are typically deployed in such a way that a minimum level of QoS is guaranteed during the peak 

traffic-load periods. However, the traffic loads at a BS vary widely over time. Topology management (or cell shaping) 

techniques aim at minimizing the energy consumption by turning off some BSs when their traffic load is low, and 
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serving their connected users by the neighboring active BSs. These techniques have been proposed for application to 

Wi-Fi, small cell and cellular networks. 

The detection of the clusters could be useful for these algorithms. For example, as illustrated in Fig.4, favoring the 

switching off for a BS without clusters since its users are likely to be far from each other and get served by several 

nearby BSs, and avoiding this operation for a BS with a large cluster to avoid the handover of a large number of users to 

a single neighboring BS. The appearance of clusters far from active BSs can be also used as a criterion for activating 

some BSs. 

In this work, we recast our topology management problem as an optimization problem, where the object is to maximize 

the number of APs to be switched off subject to constraints on coverage and QoS. The transmit power of the APs are 

among the variables of the optimization problem. This problem is then solved using heuristic techniques. The real 

traffic requirements of mobile users can be obtained by monitoring their activity over a time window. The main 

constraints of the optimization problem are derived from the RSS measurements made between these UEs and the APs 

as shown in the matrix of Fig. 1(a). Each row corresponds to one UE and each column corresponds to one AP. An RSS 

entry in this matrix is obtained by averaging several RSS measurements over a short time window and after eliminating 

outlying values. The outlier elimination is done automatically by applying a model selection technique [4]. A QoS 

measured in terms of the data rate should be guaranteed for all the users. The real traffic requirements of users can be 

obtained by monitoring their activity. 

 
Fig.4 (a) Cluster of mobile terminals served by the central BS. When this BS is turned off, the cluster of users will make a handover to only one BS 

(the upper right one) whose traffic might highly increase. (b) There is no cluster in the area of the central BS. When this BS is turned off, its users will 

get served by several nearby BSs and their traffic will be distributed among them. 

 

4. Real-World Implementation on a Wi-Fi based Platform 

 
In order to validate the various proposed techniques, we developed a Wi-Fi based platform which implements the two 

aforementioned applications. The main reason behind using a Wi-Fi-based platform to emulate a cellular network is to 

avoid using proprietary hardware systems and to use unlicensed Industrial, Scientific and Medical (ISM) radio bands. 

The proposed platform (Fig. 5) is based on several managed 802.11g APs that can be remotely controlled by a server 

via a WLAN Switch (Switch On/Off, control their transmit power, etc.). The APs are powered via Ethernet and their 

power consumption is monitored at the WLAN Switch interface. The UEs used in this demonstration are Android 

smartphones and Linux laptops. These UEs periodically monitor the network and send information about the 

neighboring APs like RSS measurements, delays and the bandwidth. This information is transmitted via Wi-Fi to the 

server. The server collects information about the UEs connectivity, handover, etc. The tested algorithms are 

implemented on the server by running Matlab and Python scripts. 

A demonstration of the running platform is available online [6]. This platform has been successfully used to perform 

user clustering and turn off base stations of the network when they are not needed. This proof of concept showed that 

Cognitive Green Radio is a paradigm that can be applied in the real world given that enough information is known by 

the network. 
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Fig.5 The proposed platform based on managed 802.11g APs remotely controlled by a server via a WLAN Switch 

 

 

5. Conclusion 

We present in this work some RSS based approaches to achieve energy saving for WLAN and cellular networks. The 

proposed techniques are tested in real radio environment with two application scenarios: energy-aware topology 

management for cellular networks and mobile terminals clustering. A real world Wi-Fi based proof of concept is 

described, which shows that Cognitive Green Radio, far from being a purely theoretical concept, is a realistic, feasible 

paradigm upon which future wireless networks should be designed. 
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