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I ntroduction

The ever-growing increase of frequency bandwidfitelecommunications systems have been puttingge konstraint
on Analog to Digital Convertors (ADC). This constrtaoriginates from the Shannon-Nyquist sampling:l&o prevent
any overlap sampling have to be performed at thanStn-Nyquist rate which has to equal at least ewiite
transmitted bandwidth. As a result, the larger ba@dwidth, the higher the sampling frequency ared hilgher the
energy consumption of the ADCs. To cope with tesue, especially in non-contiguous bandwidths ¢iduti bands
containing holes [2] — one would refer to spargmal spectrums), one solution is to use non unifsampling schemes
(NUSS) what makes possible the update of the samfilequency according to the spectral occupaniey iven the
Multi-Coset (MC) NUSS this paper proposes an odpiriteria (namely AliasMin mode) to lower the spem side
lobes of signals when using NUSS. Following thisaidit is shown that the sampling frequency of ADfas be
updated according to the spectrum occupancy ratspérsity rate) to mitigate the energy consumpiioADCs.

1. Non Uniform sampling and Multi-Coset scheme

Non Uniform Sampling Schemes (NUSS) have been megdor a long time due to their nice propertydwer the

replica of signal spectrums [1]. Several NUSS eaisi can be classified in two categories: detestimschemes and
random schemes. The first category gathers schainese sampling times are perfectly known (not ramdwhat is

not true in the second one. Considering that thétiMdoset belongs to the first category and théedd Random
Sampling (JRS) and Additive Random Sampling (AR&pbg to the second one, the schedule of samptiategies is

sketched on Figure 1.
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Figure 1 : Sampling schemes classificatigdngampling time, {} set of samples times)
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Multi-Coset (MC) scheme is an attractive NUSS bseaiti leads to a sampling frequency lower to Shaswgquist

one and has a good reconstruction quality if tleo@ated pattern (see below) is well chosen. Figuiltustrates the
principle of MC compared to uniform sampling schefigquist samples). MC is a periodic non unifornmgéing

scheme whose sampling pattern is the same all dlengignal itself: the process seleptsamples among. Thep

samples (7 on Figure 2) are chosen according &iadic pattern (0, 2, 5, etc.).
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Figure 2 : Multi-Coset principle

As said, the choice of the pattern (and its samgkes® key parameter in the MC-NUSS as the regul§ipectral
regrowth impact by large the reconstruction quatitg gain in the sampling frequency and as a cpesee the energy
gain of the ADC.

The resulting pattern which gathers all samplinges after MC sampling is given as follows:

) = V‘ arpd(t — kT,
Ld
k=0
where
o = i), 0< k<p—1,0<1i < oo,

and T is the sampling period. This signal can biewr as a Fourier series:
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The Fourier Transform ofud(t) is then given by :

T \ | c/ n
(“nu"fj = S -4710( f ﬁ’

n=17

As a result, the spectrum of any sigré) sampled with MC scheme is given by :
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where X(.) is the spectrum of x(t). Then, it isye#ts show that the spectrum Xf.{f) depends on Awhich depends on
ax , L and p. That is to say that a good choicp ahdL results in good spectral properties of MC sampéicigeme.

The MC scheme can be divided into three stepafijpting at frequencg/T (ii) slicing the sampling times into pieces
of L samples (iii) keepingg samples per slice. Considering that the sigif@lis of lengthyLT (and truncated with a
rectangular shape function), the final signal iggiby :

“*‘NIC[ t l - u‘l‘CCt I t’ u mc r t ] *

Then, in the frequency domain,

n—=-—oc

where A, have been defined previously. Note that the regtlm shape can be changed to Hamming, Hanning or
Blackman.

We first consider thBurst mode where the p samples are the first ones ofithéow of size L. Figure 3 illustrates the
shape of the spectrum for L=32 and L=22 and fofediht values ofy. It is seen that the choice of the samples
influence by large the spectrum quality and reghov8ame result can be obtained according toR&wed mode for
which the samples are chosen randomly in the winalosize L.
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Figure 3 : Whdf) for L=32 and p=22 (Burst Mode)

As a result, we proposed the Alias Min algorithmichhselects thgg sampled which minimize AThis algorithm is
called “AliasMin”.

2. AliasMin algorithm and ssmulation results

The Alias Min algorithm (Figure 5) selects p sam@@nong L similarly to SFS (Sequential Forward &ale) in [4].
Figure 4 illustrates Alias Min performance. The epincreases, the more frequencies are well localjaechultiples
of 1/LT).
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Figure 4 : Alias min results for L=32 and L=22
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Figure 5 : Alias Min algorithm
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Figure 6 : Alias Min for different p values (L=32)
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Figure 7 : Alias Min for different values of p ahda=p/L)

3. SENURI sampler

Using Alias Min algorithm in the SENURI sampler whitunes the sampling frequency according to tlaecHy of the
signals [3], it has been shown that there is afiteineusing a cognitive engine. Figure 9 illus&atthis gain compared
to the case where the sampling frequency is alwaysame (ie equal to the Shannon frequency). SERUbased on
a MC scheme and the quality of the spectrum serstielg depends on the spectrum quality driven byAliees Min
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algorithm. Figure 8 sketches the main steps ofptlogposed non uniform sampler: position 1 refersh adaptation
step (tuning the sampling parameter accordingdcsihnal sparsity) and position 2 refers to themstruction step.
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Figure 9 : sample frequency gain
4. Conclusions

In this paper, we showed that the choice of samjplason uniform schemes influence by large the iguaf the
spectral quality. When considering a cognitive sehavhere the sampling frequency is tuned accortdintge sparsity
of the frequency, the sampling frequency can bégatitd what save energy in the ADC.
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