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@ Future 5G cellular networks must support the 1000-fold
increase in traffic demand

@ New physical layer techniques, e.g. Massive MIMO,
Millimeter wave (mmWave)

@ New network architecture: user centric architecture

@ Cloud RAN concept is also emerging

@ Local caching of popular video traffic at devices and RAN
edge

@ Network topology

@ Device-to-Device (D2D) communications



General Introduction

General Introduction

Figure: Wireless network
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Resource Allocation in Wireless Networks

@ Resource Allocation improves the network performance
@ Resources: slots, channels, power, beamformers,...

@ Services: voice, video streaming, interactive games, smart
maps, ...

@ Typical Utility functions: throughput, outage, packet error
rate, transmit power,...

@ Stability region
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Resource Allocation in Wireless Networks

@ Computational complexity: NP hard, sub-optimal
solutions,...

@ Physical layer (e.g. Massive MIMO): convex/non-convex,
combinatorial, MINLP, ...optimization frameworks

@ Non-existence of a central entity that can handle the
allocation (e.g. D2D) and the amount of information
exchange (signaling) between transmitters. Mathematical
tools: stochastic game theory, distributed optimization,
distributed learning, etc.

@ Connectivity of the nodes (e.g. D2D communication).

@ Network topology, high number of users

@ Traffic pattern and QoS/QoE: stochastic constraints
depending on the service used (real time, streaming, ...).

@ Availability of the system state information (e.g. CSI).
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Fully Decentralized Policies

@ Fully decentralized scenario
@ No exchange of information between transmitters.

@ Each transmitter exchanges information with its own
receiver

@ The action (resource) is a scalar
@ Low complexity algorithm
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Nash Equilibrium Seeking [1]

Consider a network of n interacting nodes (e.g.
interference)

Each node has a reward to maximize. The decision of
each node has an impact on the reward function of the
other nodes.

Sup Es/j(S,a.a.) j €N (1)
ajeA/

where N := {1,..., N} is the set of nodes, A; C R is the
action space of node j, S is the state space of the whole
system, where S C CN*N and the node reward

ri: 8 x [[yen Ay — Ris a smooth function. The state
space S evolves ergodically such that Egr;(S, a;,a_)) is
always finite.
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Nash Equilibrium Seeking [1]

@ No exchange of information between the transmitters

@ Each receiver sends to its own transmitter a numerical
value (or estimation) of the reward

@ The reward may have a complicated expression (e.g.
outage probability, throughput...) : computing the gradient
is hard!

@ Each transmitter has always an information to send (full
buffer)

@ Extremum seeking has been studied in [2, 3, 4, 5, 6, 7]
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NE Seeking [1]

@ Algorithm:
ajk = ak+bsin(Qtk + &) 2)
Bt = Zk+MZbsinQt+6)Fk (3

@ Performance:

Main Result (Variable Learning Rate)

The learning algorithm converges almost surely to the following
ODE (i.e. asymptotic pseudo-trajectory):
d. :
aaj,t = Zjbj sm(th =4 (]5/)Es[l’j(s, a;)] (4)
gt = &+ bsin(Qt+ ¢)) (5)
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NE Seeking [1]

Let A := ||a; — a*|| be the gap between the trajectory of the
ODE a; at time t and the equilibrium point a*.

Main Result (Exponential Stability)

There exist M, T > 0 and €, b; such that, for all e € (0,) and
b; € (0, b)), if the initial gap is Ao := ||@* — ag|| (which is small)
then for all time t,

At <yt (6)
where

it = Me T'Ag+ O(e + max b?) (7)
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Numerical Results [8]

@ Power control problem (two users)

Pi k| i |2

i(Hk, Pk) 9( o2 4+ Z,-/#;Pi’,k‘hi’i,klz

) — KPik

@ pio and ppo: initial points

@ h;; is time varying, i.i.d. complex gaussian
@ Noise variance 02 = 1

@ NE: p; =3.9604ic (1,2)
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Numerical Results [8]

Transmitter Receiver 1

Transmitter Receiver 2

Figure: System model for two network each with transmit receive pair
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Numerical Results [8]
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Figure: Power evolution (discrete time)
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Randomized Policies
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Randomized Policies

@ Stability region

@ SISO, MIMO : joint precoding and scheduling (queue
aware)

@ Joint resource allocation and channel feedback policies
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Example [9]

@ Two user interference channel with single antenna per user
and fading channel

@ (Ry,0), (ry,r2) and (0,R>)
@ Symmetric environment (rq =r> =«)

@ FCSMA

a? 1

A< TET T a1 (8)

@ Joint traffic splitting and FCSMA

a? 1)

A< aTs T 2at )
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@ Dense networks

@ Global convergence

@ Network Stability and Feedback Design in Dense Networks
@ Massive MIMO and dense networks (TDD)

@ Stability region

@ Decentralized stable solutions (joint precoding-scheduling)
@ delay, QoS, QoE constraints
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Last Slide

Thank you
Questions?
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