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Abstract

We study the diffussion process (in position space) of charged particles in an electromagnetic
noise. We use self-consistent hybrid electromagnetic code to produce a wide-band noise
exhibiting the same properties as the whistler mode. We build the diffusion coefficients, and
show that the obtained values are larger than the one predicted by analytical models. The
electric fiels (generally not considered in analytical models) is supposed to play in important
role by non-linearly coupling with the magnetic field.

Nous étudions la diffusion (dans l’espace des positions) des particules chargées dnas un
bruit électromagnétique. Nous utilisons un code hybride auto-cohérent pour produire un
bruit large bande ayant des propriétés similaires au mode de sifflement. Nous reconstruisons
les coefficients de diffusion et montrons que les valeurs obtenues sont supérieurs à celles
prédites par les modèles analytiques. Nous supposons que le champ électrique (générallement
non considéré dans ces modèles analytiques) joue un rôle important en se couplant non-
linéairement au champ magnétique.

1 - Introduction

The problem of charged particles motion in an irregular electromagnetic field is of importance
in various fields of plasma physics : understand the cosmic ray radiations in an irregular in-
terstellar magnetic field (see e.g. [1]), the problem of particle confinement in a tokamak with
destroyed magnetic surfaces (see e.g. [2]) or the filling up of the magnetosphere (specifically
the Low-Latitude-Boundary-Layer, see e.g. [3]) with particles coming from the solar wind
when magnetic reconnection is ineffective. The problem is that simple : how effective is the
charged-particle transport depending on the characteristics of the electromagnetic pertur-
bations. It is now understood that electromagnetic noise has consequences for the particle
diffusion (in real space) and particle scattering (in velocity space), and that both effects
have connections (see e.g. [4]).
In the framework of turbulence, various analytical models have been developed (see e.g. [1],
[3], [5], [6]), as well as numerical simulations (see e.g. [4], [5], [6]). Of course, the complexity of
the models grows with their accuracy. They generally invoke the particle velocity, the mean
magnetic field, and the characteristics of the turbulence like the slope of the spectrum, the
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associated energy and the mean free path of the parallel scattering. These models have been
conforted with test-particle simulation where a bunch of particles are followed in a prescribed
magnetic turbulence to compute a statistical diffusion coefficient.
The nature of the waves is not always considered, and in most of these studies, only the
magnetic component is believed to play a role. We thus present original calculations of par-
ticle trajectories in a self-consistent electromagnetic hybrid code (see also [7]). We will first
introduce the numerical method used, and the way we rebuild the perpendicular diffusion
coefficient. Then, we will investigate the nature of the electromagnetic perturbations that
develop and diffuse the particles. The last part will focus on the results and comparison with
existing models.

2 - Numerical method

We use for this work a self-consistant hybrid code : Protons are computed as macro-particles,
electrons are followed as a massless fluid, and electromagnetic fields are calculated under
Darwin approximation (neglecting the transverse component of the displacement current see
[8] for details on the numerical scheme). The code is 2D in real space (X − Y plan) and 3D
in velocity space. We set as initial condition a uniform B0 = B0ẑ magnetic fieldi (B0 = 1),
and 2 beams of opposite drift velocity in the X direction to generate the electromagnetic
perturbations. As the main magnetic field is in the invariant direction, the particle diffusion
is not switched off because of artificial numerical invariant as pointed out by [9].
The perpendicular Fokker-Planck diffusion coefficient κ⊥ is defined as〈

δy2

δt

〉
where δy is the drift in Y during δt and the mean value is calculated over the particles. This
coefficient quantifies the ability of a particle to separate from the magnetic field line where
it was tightened initially. Small values of κ⊥ means that particles behave in the magnetic
field like beads on a string.
The value of δy is not as straightforward to calculate as in particle-test simulations : because
of the self-consistant developing electric field, the field lines are drifting. Because there is
no non-ideal effects, the magnetic field is frozen in the plasma. δy is thus the net drift of
the particles in the Y direction minus the net drift of the fluid (computed locally for each
particles). With this care, there is no trail of the advection in the value of κ⊥. Fig. 1 displays
〈δy2〉 depending on time. The slope is non-ambiguous, and gives the value of κ⊥ depicted
by dashed line.
As the plasma is magnetized, the particle gyromotion appears at the gyrofrequency ωC =
qB/m in Fig. 1. Through time, as the magnetic noise is developing and the gyrophases
are mixing, this frequency is smoothed-out. It is not reported here, but the probability
distribution functions of both the particle net drift δy and magnetic noise Bz show nice
gaussian profiles, excluding any superdiffusion processes as suggested by [3].
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Fig. 1 - 〈δy2〉 depending on δt. The slope gives κ⊥.

Between different simualtions, we tune the net drift of the beams. As its value increases,
the level of both electric and magnetic noise also increases. Furthermore, as this initial
configuration is not an equilibrium one, the initial 2 beam distribution functions merge in a
resulting Maxwellian distribution with a larger perpendicular temperature T⊥.

3 - Nature of the electromagnetic noise

The time evolution of the plasma parameters (density, velocity and temperatures) and the
electric and magnetic perturbation are strongly varying at the begining of the simulations,
but get quite stationary values very quickly (t ∼ 20) compared to the total time (t = 1000)
of the simulations. In such a stationnary condition, the values of 〈δE2〉 and 〈δB2〉 is only
depending on the value of the initial drift. We had 9 simulations with drift velocity Vd varying
between 0 and 4 and a step of 0.5. Figure 2 represent the value of 〈δE2〉1/2 depending on
〈δB2〉1/2.
The constant slope of δE/δB is the phase velocity in the case of a monochromatic wave. In
the present case, this is the mean value of the phase velocities associated to the different
modes, weighted with their amplitude in Fourier space. Parametric studies showed that this
slope depends linearly on B0, n−1

0 and q−1. This would suggest that the waves are of whistler
type, for which
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Fig. 2 - 〈δE2〉1/2 depending on 〈δB2〉1/2.

In the present case, wide band waves can develop. Looking at the spectrum (not reported
here), it is wide, noisy, but quite flat. Noting kl the wave number, kl = 2πl/L for l varying
between −N/2 and N/2 (L is the lenght of the box in the Y direction and N the number
of grid points). The phase velocity is proportional to k and the sum over k gives

2
1
N

2π
L

N/2(N/2 + 1)
2

=
π(N + 1)

2L

In the left-hand side of the above equation, the first 1/N is an average (because the spectrum
is flat) and factor 2 comes from the symmetric role of positive and negative k. Tab. 1 show
the numerical and analytical (with the above expression) values of the slopes for 3 series of
runs, varying the ratio N/L. The agreement is very good.

numerical analytical
runs (a) 3.74 3.97
runs (b) 2.55 2.64
runs (c) 2.02 1.98

There is just one cloud in this nice picture : the waves in our calculations are propagating
in the X − Y plan, perpendicular to the main magnetic field B0. It can thus not be the
parallel whistler mode. But at this stage, it has all the properties of this mode, that is why
we call it a whistler-like electromagnetic noise. Furthermore, computing the Z component
of (k×E)/B in the Fourier space, one gets the pattern depicted in Fig. 3.
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Because of the Maxwell-Faraday equation, this is the dispersion equation ω(k) of the wave.
It exhibit at large k a parabolic shape like the whistler mode.

Fig. 3 - (k×E)/B depending on k.

4 - Numerical results

A comparison with different models is not that easy for different reasons : the system is not
Hamiltonian (particle energy is varying because of electric work), the geometry is different
(invariant in the Z direction), and the population is Maxwellian with a Gaussian distribution
of particles velocites. As a base for comparison, we will use the simple analytical model [9],
because we can give a simple explanation for it : because of noise in the magnetic field, the
Larmor radius is not constant during a cyclotron turn. If a particle drifts of a quantity δρL

during τC , the associated diffusion coefficient is

D⊥ =
〈
δy2

τC

〉
The average has to be done on a large number N of cyclotron turns and for all particles. It
is thus a temporal and spatial average. If during one cyclotron turn the particles drift from
a quantity h, the particle will drift of

√
Nh during N cyclotron turns. The temporal average

thus gives the same expression than the spatial one. Assuming half particles are drifting
with δy > 0 and half with δy < 0, with δρ2

L = δx2 + δy2 and 〈δx2〉 = 〈δy2〉, one gets

D⊥ =
〈
δρ2

L

4τC

〉
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Using
δρL

ρL
=
δB

B
, τC =

m

eB
and ρL =

mV⊥
eB

D⊥ =

〈
mV 2
⊥

4eB

(
δB

B

)2
〉

With relation 〈mV 2
⊥〉 = kBT⊥, we reach half the value provided by [9] :

D⊥ =
kBT⊥
4eB

〈
δB2

B2

〉
Fig. 4 displays the numerical values of κ⊥ depending on its analytical values given by the
above model (open circles). The dotted line indicates the angle bisector of the axes. It is
clear that the numerical values obtained are far larger than the analytical predicted ones.
But in the present case, one has to consider the self-consistant electric field.

Fig. 4 - Numerical values of κ⊥ depending on its analytical values (open circles). The
values given by the open triangles are the one obtained with test-particles diffusing in the

same electromagnetic noise.

We thus had another set of runs with the same parameters, except that the electric field
perturbations were removed (but we considered the same magnetic noise). The obtained
results are depicted with open triangles. Our purpose is to emphasize the role of the electric
field, generally neglected in test-particle studies. There are two main conclusions : the electric
field plays an important role in the diffusion process, and if we only consider the electric
perturbation and remove the magnetic perturbation (not depicted here), the associated
diffusion coefficient is very small.
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5 - Conclusions

We study the particle diffusion in real space because of electromagnetic perturbations in
a magnetized plasma. With whistler-like electromagnetic noise and a flat spectrum (wide
band noise), we computed the Fokker-Planck diffusion coefficient. We show that analytical
model underestimates the diffusion process. We put forward the importance of the electric
field, and more specifically, its nonlinear coupling with the role of the magnetic perturbation.
At the magnetopause, the Cluster II mission usually observe a value of 〈δB2/B2〉 ∼ 0.15
(see e.g. [11]). With these values, we reach an analytical value of about 0.4 in the diffusion
coefficient. As pointed by [12], the value 0.1 is the threshold to fill-up the Low-Lattitude
Boundary Layer. The importance of diffusion process at the magnetopause should then be
re-evaluated.
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