

Matching of an Observed Event and Its Virtual Model in Relation to Smart Theories, Coupled Models and Supervision of Complex Procedures

Adel Razek

URSI JS 23, 21-22 March 2023, CentraleSupélec

27/03/2023

Observation-Modeling Duo

OBSERVATION LINK MODELING

EXPERIENCE, MANIPULATION, OPERATION

THEORY, PREDICTION, IMITATION

Uncertainty-Link-Capacities

Camouflage (Bates, H. W. 1862) Camouflaged & Dupe Predator or Victim

Offline Matching Static Target (Unchanged) Online Matching Dynamic Target (Mutant) ****Observation-Theory Offline Matching** Managing of Smart Theories

*Idealized Smart Theories and Complete Coupled Models

****Observation-Modeling Online Matching Supervision of Real Complex Procedures**

MANAGING OF SMART THEORIES

Offline Matching

Complementarity of Observation and Theory

*Anthropology (e.g. myths) Observation alone (richness of memory- limited field of research) Claude Lévi-Strauss (1908-2009), Structural Anthropology, Paris 1958 Observation needs modeling for deeper research!

*In general, One can consider a theory only established after validation by observation. Moreover, Such a theory remains valid until disagreement with observation <u>Modeling needs observation, simply to be credible!</u>

Theory Generalizing and Amalgamating Observations

e.g. James Clerk Maxwell (1831-1879) Unification of three experimental laws:

JCM- Carl Friedrich Gauss (1777-1855), relates *d* to *q* JCM- André-Marie Ampère (1775-1836), links *h* to d*d*/dt and *j* JCM- Michael Faraday (1791-1867), relates *e* to d*b*/dt

Union was only possible by introducing into an equation a lacking link (displacement current), guarantees the coherence of the integrated organization

Observation Validating or Invalidating a Theory

e.g. Superposition states
S Haroche& D Wineland 1996
(Nobel 2012) validated
E Schrödinger 1930 (Nobel 1933)
& Hall effect
E Hall 1879 invalidated (JC Maxwell 1873)

Observation Confirmed and Explained Later by Theory (Serendipity) e.g. Superconductivity:

Kamerlingh Onnes (1853-1926) Nobel 1913

Innovative Computing Tools Imitating Physical Paradigms **Quantum & Neuromorphic computing** Imitating reality: quantum physics & neurosciences:

Quantum: 2 states (0 &1) switched to 2k, with k energy levels - particle superposition states involving entanglement n-bit (one of 2n at time) n-qubit (2n simultaneously) ; capacity, speed,...

```
Neuromorphic: ANN or BNN;
optimization, diagnostics, images,
machine learning, AI,...
```


IDEALIZED SMART THEORIES AND COUPLED MODELS

Real $A: B(x, y) \cup C(y) \cup D(z)...$

 A_{l} : **B**(x, y)

Smart A_2 : **B**(**x**)

Coupling Characters

Phenomena P1 & P2 Behaviors B1, B2, B12 Linear / NLinear Time constants T1, T2 Far/ Close

Case of Electromagnetic and Energy Conversion Systems

 $\nabla \times \mathbf{H} = \mathbf{J}$ $\mathbf{J} = \sigma \mathbf{E} + \mathbf{j} \mathbf{\omega} \mathbf{D} + \mathbf{J}\mathbf{e}$ $\mathbf{E} = -\nabla \mathbf{V} - \mathbf{j} \mathbf{\omega} \mathbf{A}$ $\mathbf{B} = \nabla \times \mathbf{A}$

Couplings classification

S • Integrated Coupling v = 1/C. $\int i dt + r i + L$. $di/dt + d\Psi/dt + \delta$ • Causal Couplings EM and Mechanical Coupled Problem S EM and Thermal Coupled Problem W • Material Intrinsic Couplings Magnetostrictive (magnetic-mechanic), S Electrostrictive (electric-mechanic), W Shape-memory (thermic-mechanic), W

W

ONLINE MATCHING OF THE OBSERVATION-MODELING PAIR

Automated Procedures

Matching time- Model accuracy

Observation-Modeling Pairing in Complex Procedures

Matching in Natural processes

Matching Twins in Complex Procedures

Matching in Natural Processes

Dynamic camouflage

Camouflaged & Dupe

Bayesian Brain Theory decision-making under uncertainty

Brain: statistical organ of hierarchical inference predicts current and future events of past experience

Human brain: 10¹¹neurons, each tied to 10⁴ others

Matching Twins in Complex Procedures Complex procedures (composite systems) Multi components and the physical phenomena involved

Classification (composite) by interactions (Perrow, C. 2011) :

Simple, Complicated and Complex interactions

*simply behaves in a direct or linear manner
*complicated interactions are linear and loosely coupled
*complex interactions with tightly coupled links

Multi components Classification by interactions (Perrow) e.g. 3 components

Simple Complicated Complex

To temper and control the irregular and unnecessary behaviors that occur in these complex procedures

Physical (*multiple*) + **Digital** (*joined* + *reduced*)

Digital Twin Concept (2002 by M. Grieves)

Consider in

Real: Individual Measurements and Control vectors Virtual: Joined + Reduction (preserving accuracy)

Reduced + Joined or Joined + Reduced (depend on system and reduction technique)

Examples of applications of DT

Industrial manufacturing and product design Iterative redesign of an existing product - creation of a new product **Predictive maintenance** Optimize the maintenance calendar predicting the failures of syst. and processes **Healthcare services** Medical innovations - enhance clinical health **Security activity** Micro grid security- automation syst. security **Control** Power syst. control centers and mechatronic syst. **Space, Air, Sea, ground: Intelligent vehicles (EV)** Autonomous navigation control, driver assistance syst., vehicle condition monitoring, battery management syst., electronics and electric drive syst. **Livestock sector** Improve precision farming practices, machinery and equipment, health and well-being of a large variety of animals **Smart cities** Ensure smart aspects in real property, construction, health system, building, home, transportation and parking .HCDT

27/03/2023