INSTITUT D'ELECTRONIQUE ET DE TELECOMMUNICATIONS DE RENNES

S11

Caractérisation statistique fine de différents environnements électromagnétiques en chambre réverbérante

C. Lemoine, P. Besnier, M. Drissi

JS 08 / CEM 08 / Paris / 20-23 mai 2008

Plan de la présentation

- Introduction
- Génération d'environnements électromagnétiques indépendants
- Lois de distribution en l'absence de trajet direct
- Caractérisation d'un canal de Rice en chambre réverbérante
- Conclusion

Brasseur de modes

CRBM de l'IETR : 93 m³

Parois métalliques (acier, aluminium)

- La chambre réverbérante à brassage de modes peut être considérée comme un générateur aléatoire de mesures de champ/puissance
 - C'est un moyen d'essais pour diverses applications :
 - + Essais CEM (immunité / émissivité)
 - Caractérisation d'antennes

• La propriété d'indépendance des mesures est capitale pour contrôler l'essai que l'on réalise en terme d'indépendance des mesures

+ Exemple : le résultat du théorème central limite (CLT) pour N' mesures indépendantes :

Soit $x_1, ..., x_{N'}$ un échantillon indépendant de la variable aléatoire X de moyenne μ_X et de variance σ_X^2

Pour N' grand, l'estimateur de la moyenne μ_X est distribué selon une loi Normale avec l'écart type suivant :

Appliqué aux mesures en CRBM, la distribution de *X* correspond par exemple au cas où chaque position de brasseur engendre une distribution de champ indépendante

La corrélation \rightarrow si |r|

 La fonction d'autocorrélation r est la mesure communément admise de l'indépendance des mesures

avec:
$$\begin{array}{l} Y_{1} = \{y_{1}, y_{2}, \dots, y_{N-1}, y_{N}\} \\ Y_{2} = \{y_{2}, y_{3}, \dots, y_{N}, y_{1}\} \end{array} \qquad r(Y_{1}, Y_{2}) = \frac{Cov(Y_{1}, Y_{2})}{\sqrt{Var(Y_{1}) \times Var(Y_{2})}} \end{array}$$

[ACF(1)]

• D'une manière générale $r \in [-1;1]$

Absence de corrélation si
$$r = 0$$

Génération d'environnements électromagnétiques indépendants

• Les normes telles que IEC 61000-4-21 supposent l'indépendance statistique des conditions aux limites en CRBM entre 2 positions de brasseur successives si r < ρ_0 = 0,37

Génération d'environnements électromagnétiques indépendants

• D'où la détermination de l'intervalle de confiance à 95% : $[\rho_1; \rho_2]$

tel que : $\rho_1 = r - 1,96 \sigma$ et $\rho_2 = r + 1,96 \sigma$

 Nous nous attachons à respecter la condition suivante pour l'indépendance : avec N=1500 mesures, l'espérance de l'ACF(1) est dans l'intervalle [r - 0.05; r + 0.05]

- Concept de taille effective (*) d'un échantillon *N*' (ESS):
- Soit y_1, \dots, y_N un échantillon corrélé de la variable aléatoire Y de moyenne μ_V et de variance σ_V^2

Appliqué aux chambres réverbérantes, *Y* correspond au cas d'un brassage pour lequel les positions de brasseur sont corrélées, à cause d'une modification insuffisante des conditions aux limites

N' est le nombre d'échantillons indépendants d'une série corrélée de taille N

(*) Estimating the effective sample size to select independent measurements in a reverberation chamber C. Lemoine, P. Besnier, M. Drissi, *IEEE Trans. on EMC*, May 2008

Génération d'environnements électromagnétiques indépendants

• Détermination de la taille effective *N* ' à l'aide d'un modèle de régression :

$$N'_{AR(1)} = N \times \frac{1 - \Phi_{11}}{1 + \Phi_{11}} \times \left(\frac{\sigma_x}{\mu_x}\right)^2 \times \left(\frac{\mu_y}{\sigma_y}\right)^2 \qquad N'_{AR(2)} = N \times \frac{1 - \Phi_{21} - \Phi_{22}}{1 + \Phi_{21} - \Phi_{22}} \times \left(\frac{\sigma_x}{\mu_x}\right)^2 \times \left(\frac{\mu_y}{\sigma_y}\right)^2 - Ordre 1 - Ordre 2 - y_t = \Phi_{11} \times y_{t-1} + \varepsilon_t \qquad y_t = \Phi_{21} \times y_{t-1} + \Phi_{22} \times y_{t-2} + \varepsilon_t$$

• La formulation générale d'un processus AR(k) exprime l'observation à la date t de la variable dépendante y_t en fonction des observations précédentes $y_{t-1}, y_{t-2}, ..., y_{t-k}$ et d'un résidu ε_t

• Augmenter l'ordre k d'un modèle est nécessaire lorsqu'il reste suffisamment d'information qui n'est pas exploitée dans le résidu

• Pour la CRBM, nous considérons que les résidus sont indépendants lorsque l'ACF(1) $|r_{\epsilon}|$ des résidus est inférieur à 0.1 pour N=1500 échantillons

f (MHz)	$\Phi_{11}(N)$	Φ ₁₁ (N')
400	0.74 (300)	0.06 (52)
700	0.41 (300)	0.11 (133)
1000	0.21 (300)	0.11 (220)

Lois de distribution en l'absence de trajet direct (NLOS)

Lois de distribution en l'absence de trajet direct (NLOS)

Exponentielle

Résultats expérimentaux : tests d'ajustement de Kolmogorov-Smirnov et de Anderson-Darling

- |ACF(1)| < 0.10 pour chaque fréquence
- Rejet de Rayleigh pour le champ
- Acceptation de Rayleigh pour la puissance

Acceptation de Weibull pour le champ

Lois de distribution en l'absence de trajet direct (NLOS)

Un canal de Rice est caractéristique d'une propagation LOS (*Line-Of-Sight*)

- Densité de probabilité de la distribution de Rice : $f(x,v) = \frac{x}{\sigma^2} \exp\left(-\frac{x^2 + v^2}{2\sigma^2}\right) I_0\left(\frac{xv}{\sigma^2}\right)$ *v* représente l'onde directe
 - σ représente la dispersion du signal due aux trajets multiples

Nouvelle méthode statistique d'estimation du canal de Rice :

+ Les paramètres complexes en transmission S_{21r} et S_{21i} sont distribués selon une loi normale.

Le canal peut être caractérisé par la distribution du module du paramètre en transmission : $|S_{21}| = \sqrt{S_{21r}^2 + S_{21i}^2}$

Soient X et Y deux v.a. distribuées selon des lois normales indépendantes et définies par : $\begin{cases}
X \sim N(v \cos \alpha, \sigma) \\
Y \sim N(v \sin \alpha, \sigma)
\end{cases}$ et $v^2 \cos^2 \alpha + v^2 \sin^2 \alpha = v^2$

Alors, on peut montrer que la v.a. $R = \sqrt{X^2 + Y^2}$ suit une distribution de Rice de paramètres (v, σ)

★ A l'aide de la méthode du maximum de vraisemblance on détermine (v, σ):
avec N(µ_Z, σ_Z) une distribution de la loi normale : µ_Z = 1/N ∑_{i=1}^N z_i o_Z = √(1/N) ∑_{i=1}^N (z_i - µ_Z)²

A l'aide de tests d'ajustement adaptés à la loi normale (KS ou AD), on vérifie que S_{21r} et S_{21i} sont distribués selon les lois normales respectives $N(v \cos \alpha, \sigma)$ et $N(v \sin \alpha, \sigma)$

Caractérisation d'un canal de Rice (LOS)

• Exemple de distribution de Rice obtenue en CRBM et validée par les tests d'ajustement :

Paramètres de la loi de Rice estimés théoriquement :

$$\begin{cases} \hat{v} = 0,03\\ \hat{\sigma} = 0,15 \end{cases}$$

Fréquence d'excitation : 700 MHz

Brassage mécanique : 30 positions de brasseur indépendantes

Brassage électronique :

X

50 fréquences indépendantes dans $\Delta f = 20 \text{ MHz}$

Avantage : la loi de Rice est déterminée à partir d'outils statistiques. Son estimation est plus précise que par un ajustement visuel de la distribution théorique à la distribution expérimentale.

Caractérisation d'un canal de Rice (LOS)

Variation du DSR (Direct-to-Scattered Ratio)

Générateur

Caractérisation statistique fine de différents environnements électromagnétiques en CRBM – C. Lemoine

Analyseur de

spectre

Conclusion

• La chambre réverbérante à brassage de modes permet de simuler différents scénarios de canaux de propagation

• C'est la diversité des champs créés par les différentes positions du brasseur qui engendre un champ statistiquement homogène et isotrope sur une rotation complète du brasseur

• L'estimation de la loi de distribution sous-jacente des mesures n'est pertinente que si l'on analyse une série d'échantillons non corrélés

$$N_{AR(1)}^{'} = N \times \frac{1 - \Phi_{11}}{1 + \Phi_{11}} \times \left(\frac{\sigma_{X}}{\mu_{X}}\right)^{2} \times \left(\frac{\mu_{y}}{\sigma_{y}}\right)^{2} \qquad \qquad N_{AR(2)}^{'} = N \times \frac{1 - \Phi_{21} - \Phi_{22}}{1 + \Phi_{21} - \Phi_{22}} \times \left(\frac{\sigma_{X}}{\mu_{X}}\right)^{2} \times \left(\frac{\mu_{y}}{\sigma_{y}}\right)^{2}$$

• Simulation de canaux NLOS : Rayleigh, exponentielle, Weibull

Existence de tests d'ajustement adaptés

Simulation de canaux LOS : Rice

Utilisation de tests d'ajustement sur les parties réelles et imaginaires de S_{21}