

Avion composite: nouvel environnement électromagnétique dans la distribution électrique

A.Goleanu, JM.Guichon, JL.Schanen,

M.Dunand,

M.Lionet

Plan de l'exposé

- 1. Introduction
- 2. Cas d'étude
- 3. Méthode de modélisation
- 4. Résultats
- 5. Conclusion

1- Introduction: Avion plus électrique

- Consommation électrique augmente (Bleedless, IFE, ...)
- Réduire masse, consommation de kérosène
- Maintenabilité améliorée
- ⇒Power by Wire, avion plus électrique
- ⇒Repenser la distribution électrique en aéronautique

1- Introduction: Avion Composite

- Gains de masse
- Rigidité
- Gain d'entretien
- Composite = assez mauvais conducteur

• Échauffements interdits

1- Introduction: des besoins de modélisation

- Nécessité de créer un référentiel électrique assurant les fonctionnalités d'une carlingue aluminium (ESN, CRN).
 - Passage des courants de retour Equipotentialité
 - Ecoulement des courants de défaut
 Écoulement des courants foudre
 Protection HIRF, CEM.
- Garantir les contraintes sur le matériau
 - Circulation de courant, échauffements
 - Courants induits par proximité
- Maitriser la sécurité électrique
 - Fonctionnement dégradé du référentiel électrique

Nécessité de pouvoir modéliser un ensemble câble/composite

2- Cas d'étude

- Maquette composée de:
 - Câbles (harnais)
 - Peau composite
 - Cadres Carbone
- Courbure négligée
- Câble rectiligne

Grenskle

Cadres métalliques connectés au fuselage par des connexions carbone-carbone Cadres métalliques connectés au fuselage par des connexions métal-carbone

2- Cas d'étude

- Test: excitation électrique
 - Alimentation entre les Cadres 1 et 7
 - Mesure du courant sur le câble en différents endroits
 - Courant peau obtenu par différence I_{peau} = I_{tot}- I_{câble}
 - Précaution de câblage pour le circuit externe (influence négligée)
 - Gamme de fréquence investiguée: DC-100 kHz

2- Cas d'étude

- Gamme de fréquence investiguée: DC-100 kHz
 - 28VDC : Petites puissances
 - 115 VAC : Fortes puissances classiques
 - 270VDC : Fortes puissances APE
 - 230 VAC : Fortes puissances APE
 - Fréquence variable 400-800Hz
 - Onduleurs, Convertisseurs
 - Harmoniques
 - Impact de foudre

2- Cas d'étude: simplifications

• Influence des rivets négligée (Cadres – Peau)

A toutes fréquences Z peau >> R rivets

=> Connexion idéalisée (équipotentielle) Cadres - peau

- Choix d'une méthode
 - Différences finis, Eléments finis (FDTD)
 - Lourdeur de mise en œuvre pour des grands systèmes (maillage de l'air)
 - Temps de calcul importants.
 - Méthode des moments, (MoM)
 - Maillage des conducteurs uniquement (Faible nombre d'inconnues)
 - Plutôt utilisée en calcul de champs,
 - Faible convergence en basses fréquences
 - Partial Element Equivalent Circuit (PEEC)
 - Maillage des conducteurs uniquement (Faible nombre d'inconnues)
 - Exploitation directe sous forme de schéma électrique
 - Bon candidat potentiel

- Méthode PEEC
 - Chaque élément du circuit électrique est décrit comme un circuit
 R, L auquel il faut associer les couplages avec les autres éléments

- Plaque maillée en 2D, cadres en 2D, câbles en 1D
- Connexion point à point des maillages cadres-peau (automatique par proximité)

UNIVERSITE JOSEPH FOURIER

- Maillage 2D => nombre élevé d'éléments (reste raisonnable vis-à-vis de la MEF)
- Méthode PEEC => prise en compte des couplages impérative => Matrices pleines
- Solveur circuit dédié implanté dans l'outil PEEC utilisé

 Impossible de traiter tout un avion actuellement (programmes de recherche déposés et/ou en cours)

4- Résultats

• Etude de sensibilité: influence de la distance câble-peau

4- Résultats

• Etude de sensibilité: influence de la distance câble-peau

4- Résultats

- Forte sensibilité de la phase (effet des couplages)
- Le déphasage peut atteindre 180° en haute fréquence (courant câble de sens inverse au courant total => courant peau bien supérieur) (Ipeau = Itot - Icâble)

5- Conclusion

- Méthode PEEC apte à traiter ce type de configuration (modification de certaines formulations analytiques)
- Forte sensibilité des déphasages aux distances câble peau (effet des couplages en HF)
- La taille du problème est limitée par le nombre d'éléments du maillage des conducteurs (essentiellement peau et cadres en 2D) – matrices pleines

- Possibilité de prise en compte de conducteurs « aller »
- Possibilité de connaître les densités de courant

5- Perspectives

- La méthode PEEC semble être un candidat intéressant pour modéliser les retours de masse dans les avions composites
 - Maillage des conducteurs uniquement
 - Validation expérimentale
 - Accès aux répartitions de courant
 - Prise en compte du réseau « aller » aisée (conducteurs non maillés), importance forte de ces conducteurs « aller »
 - <u>Règles de câblage possibles</u>
- Mais
 - Matrices pleines
 - Nombre d'éléments limités
 - Méthode doit être adaptée pour traiter un gros système

5- Perspectives

- Des pistes d'évolution...
 - Maillage adapté

- Simplifications géométriques (exemple rivets)
- Prise en compte simplifiée des couplages avec des éléments lointains (développements multipolaires)

