analysis of 3G terminal emitted and received power during a real use research sponsored by GSMA

Azeddine GATI, A. Hadjem, M-F. Wong, J. Wiart

Orange Labs

context

- standards based on maximum maximorum concepts
 - Maximum Power
 - positioning distance
 - Phantoms
- public information on EMF
 - Real exposure
 - Multi media uses
 - Mean/average exposure —
 - characterizing the main factors on the exposure
- mobile operators responsibility
 - Corporate social responsibility
 - Sustainable development
 - "Grenelle de l'environnement"

Mobile et santé : toujours pas d'étude en France

of the Delay. m ont adressé hier une lettre

Une étude suédoise dé- Par ailleurs, un éminent scienmontre notamment que le tifique britannique, William risque de tumeur à l'oreille Stewart, a dénoncé la semaine ouverte au ministère de la est quatre fois plus important dernière à la une du Times le Direction générale de la Santé pour dénoncer l'ab- chez les personnes utilisant danger des portables pour les santé. Aujourd'hui, les assosence d'étude en France sur un portable depuis dix ans, cerveaux des enfants. Une en- ciations réclament des en-

pour l'environnement affirme avoir déjà interpellé, en vain, le ministère de la Santé et la

Previous work

	3G	2G	
Max	250m	250 mW	
Mean	W _{mW}	68 mW	de 10 à 20
	~20 dB	3-6 dB	UD

objectives

- investigate the emitted and received power of a 3G terminal during real uses
- in order to have a good knowledge of the real exposure due to this technology
 - Urban, rural, indoor
- What are the main factors influencing the real exposure ?
 - Service, Handset type, Network, Body influence ,in car
- Support epidemiological studies

Characterizing real exposure

- Real SAR $\langle SAR \rangle = \langle P \rangle * SAR_{\max} / P_{\max}$
 - Statistical methods
 - Uncertainty consideration
- Campaign of measurements in different configurations
 - Real time captures
 - Build models
 - Extract statistics (mean, median, max...etc)
 - Compare distributions

UMTS distribution model

- Real time captures
 - WCDMA avoid maximums
 - -HO
 - Starting a call

Log-normal model

- Median << mean
- Mean ~ max@90%
- Fast power control : 1500 per second
- Power adjustment : 1-2 dB

Uncertainty of statistical indicators

- Uncertainty assessment is a difficult task
 - Fading
 - Shadowing
 - sampling
- sampling rate

- 3.5 dB on mean value
- 2.5 dB on 90% quintile value
- 1.5 dB on median value

Urban/Rural/Indoor - voice call

Real exposure

- Low power values
- Average ~ 1mW (hundreds of times under maximum possible values)
- 90% of samples < 4mW
- Low penetration capabilities for 2.1GHz carrier
- Highly spread shape in urban compared to rural

Indicator	Outdoor Big city	Indoor City halls	Indoor Market center	Rural Small city
Mean	0.2 mW	1.1 mW	5 mW	0.4 mW
Mean/max	-30dB	-23 dB	-17 dB	-27 dB
Median	0.003 mW	0.05 mW	0.001 mW	0.02 mW
max@90%	0.1 mW	2.3 mW	2 mW	0.24 mW
Standard deviation (Log values)	12 dB	13 dB	18 dB	10 dB
Indoor/outdoor	+12 dB ±1.5 dB (median indicator) +7 dB ±3.5 dB (mean indicator)			
Rural/Urban	+3 dB ±3.5 dB (Mean indicator)			

Service influence

	Voice AMR	Visio CS64	Data PS64	Data PS128	Data PS384
Throughput rate	12.5 kbps	64 kbps	60 kbps	120 kbps	364 kbps
Relative emitted power (Median)	0 dB	4 dB	6 dB	8 dB	14 dB

- New services are highly power consuming
- Energy per bit is constant
- What about new multi-channel techniques : MIMO

Mobile phone model

- Two different handsets
- Some handsets are adapted considering a head charge
- 90% of the power is absorbed by the head and the hand
- Efficiency is compensated by the power control

11

	UE1 (Samsung Z170)	UE2 (Samsung I600)	
Handset alone		•	
Radiated power dBm	22.54 dBm	21.81	
Maximum Power	24 dBm	24 dBm	
Efficiency (%)	71.5%	60.4 %	
Handset with hand a	and head		
Radiated power dBm	12.92 dBm	14 dBm	
Efficiency (%)	7.8%	10 %	
Body loss	9.6 dB	7.8 dB	

estricted

Body loss

- Real use measurements
- Head and hand phantom filled with broadband liquid
- Real Body loss about 8 dB (±1.5dB)
 - In lab 9.6 dB

Main factors

Factor	Influence
Indoor /Outdoor	5-10 dB
Rural/ Urban	3 dB
Static/moving	1-2 dB
Body loss (in lab) Body loss (insitu)	9dB 8 dB
Body worn	4 dB
Handover	Weak effect
Service Visio CS64 / Voice Data PS64 / Voice DataPS128 / Voice Data PS384 / Voice	+4 dB +6 dB +9 dB +14 dB
Notwork planning	No on radiated power*
Network planning	1 dB

Emitted power vs revceived power

- stronger is the reception, lower is the emission of the handset
- increase base station density !
 - Acceptability
 - Home
 - Femto cells
 - Pico cells

Multi-sources exposure

Large Area Coverage	Capacity Increase	Small and Medium Enterprises	Home and Home Office
Macrocells	Microcells	Picocells	Femtocells

Base Station Type	Macrocell	Microcell	Picocell	Femtocell
Puissance	5 W – 40 W 1-3 secteurs	5 W	1 W	< 100 mW
Radius	kilomètres	~ 300 mètres	100s de mètres	10s de mètres
Nb d'utilisateurs simultané	qq centaines	100	10	Qqns (typiquement 4)
Couverture	Accès public outdoor et indoor	Accès public outdoor et indoor (extension de zone dense, stade, exposition centre)	Accès public Ou accès privé Principalement indoor (entreprise, campus, aéroports, gares, …)	accès privé à la maison

conclusion

- overview of real power for 3G services
- on-site measurements collected during real stream
- many factors inducing variations of the power levels
- differences between 2G/3G technologies
 - fast power control and HO management avoid maximum power emissions
 - rake receiver
- the average emitted power is strongly dependent on high power samples.
- combining different influencing factors is a heavy task
 - worst case situation
- monitoring systems
 - Geostatistics models
 - controlled uncertainty.
- smart devices

16

ormewersigner ANRopmenutingers title - date