

Avion plus électrique ?

Les avancées technologiques sont pilotées par :

- **Use Service S**
- Securité Augmentation de la sûreté de fonctionnement / sécurité
- **Augmentation des performances**
- Séduction de coûts de fonctionnement / maintenance

Eliminer les sources multiples de puissance (hydrauliques ...) et leurs canalisations associées pour ne conserver que l'électrique

Introduction

Profits attendus*:

- 🌭 10 % masse
- 4 13 % poussée moteur
- ♦ 9 % consommation
- 🏷 15 % maintenance
- 🌭 10 % coût

* Workshop SNECMA

Vers l'avion plus électrique

Plus de convertisseurs statiques:

Aujourd'hui: qq kW, demain qq 100 kW

Aujourd'hui: actionneur hydro-électrique: qq kW P

- **Demain**: auxiliaires (inverseur de poussée, pomp P à kérosène, ...) \rightarrow qq 100kW
- b Générateurs embarqués

Paliers magnétiques

Vers l'avion plus électrique : exemple

♦ ETRAS[™] : inverseur de poussée

- Développé par Hispano-Suiza en collaboration avec Honeywell
- Conçu pour équiper le GP7200 et le Trent 900 engine nacelles pour l'Airbus A380

Principaux avantages

mpere

- Simplification de l'installation : remplacement des systèmes hydrauliques par des systèmes électriques
- Réduction du poids et des coûts de maintenance

DE LA RECHERCHI

Vers l'avion plus électrique : problématiques

Cohabitation des systèmes embarqués:

 Foisonnement croissant des systèmes de contrôle (bas niveaux) et des systèmes de puissance

Souvelles problématiques CEM en aéronautique

- Contraintes spécifiques: cyclages thermiques, vibrations, poids, matériaux composites …
- Nouvelles solutions (comparativement aux systèmes industriels classiques) à développer

Perturbations engendrées par les convertisseurs de puissance

 Élément essentiel à prendre en compte dans le dimensionnement de l'architecture électrique des avions modernes

Enjeux de la CEM

Enjeux liés à la maîtrise du bruit EM

- Sûreté de fonctionnement (brouillage des systèmes avioniques)
- Furtivité (avion d'arme)
- Temps et coûts de développement
- Prise en compte dès la phase de conception
 - Choix / validation des technologies
 - Répartition géométrique des systèmes (convertisseurs, actionneurs ...)
 - Optimisation système : répartition de la CEM sur les différents constituants (filtrage, commande, blindage ...)
 - Spécification d'un point de vue CEM des constituants : actionneurs, câbles ...

Structure de base d'alimentation des actionneurs : onduleur triphasé

- MLI (qq 10 kHz) => Onduleur = source de bruit (MC & MD)
- Distance onduleur / actionneur => câble de P (chemins de propagation des perturbations)

V Technologies des composants:

- Miniaturisation des convertisseurs => augmentation des fréquences (DC-DC : 50 kHz à 500 kHz en 10 ans ... actuellement qq MHz)
- Diminution des temps de commutation => diminution des pertes => miniaturisation
 - Maîtrise des procédés de fabrication (motifs ...),
 - Structures innovantes (COOLMOS, IGBT Trench ...),
 - Nouveaux matériaux (SiC)
- Augmentation des contraintes de CEM
 - Augmentation des dV/dt
 - Augmentation des dl/dt

Électronique de Puissance : accroissement du bruit EM

Performances des interrupteurs

mpere

Ans	1970	1980	1985	1990	2000	2000	2003	2005	2005	2010
Interrupteur	Thyristors, diodes de P	GTO, T bipolaire, diodes rapides	MOSFET	IGBT	COOLMOS	IGBT (réseau 400V)	TrenchMOS	IGBT (Traction)	Diodes Schttky Sic	JFET SIC IGBT SIC
calibres	3 KV 3 KA	3kV 3kA 100A 1kV	50A 1000V	100 A 100 V	50 A 600 V	100A 1,2kV	50A 25V	100 A 6 kV	100 A 600 V	10 A 1200 V
Fréquence	100 Hz	300Hz qqes kHz	qques 100kHz	qq kHz	qques 100kHz	10-100 kHz	1 MHz	qq kHz	qq 100 kHz	qqes 10-100 kHz
dV/dt dl/dt	1kV/μs 100A/μs	10kV/µs qques 100kA/µs	qques 10kV/µs qques kA/µs	qques 10kV/µs qques kA/µs	qques 10kV/µs qques kA/µs	qques 10kV/µs qques kA/µs	qques 10kV/µs qques kA/µs	qques 100kV/µs qques 10kA/µs		qques 100kV/µs qques 10kA/µs

Électronique de Puissance : accroissement du bruit EM

Étendue spectrale du bruit EM généré par les convertisseurs de P

- Plage fréquentielle très étendue
- Chaque étage de conversion contribue à l'émission globale
 - En conduit et en rayonné
 - Interférences entre les sources de perturbation (modulation ...)

npere

Électronique de Puissance : source du bruit EM

La cellule de commutation

mpere

- Structure élémentaire des convertisseurs d'EdP
- Association de 2 interrupteurs : gestion du transfert d'énergie entre sources
- Grandeurs externes à la cellule sont constantes (E, I₀), les internes variables (I_e, V_k) modulées par la fonction fm(t)

Électronique de Puissance : source du bruit EM

Origine des perturbations

mpere

- Grandeurs électriques variables dans la maille de commutation
- Réduction des pertes : commutations très rapides (présence de tension et de courant simultanément - 1 kA/μs et 50 kV/μs)

Électronique de Puissance : source du bruit EM

Maille (zone hachurée) I_e subit des variations très rapides à haute fréquence ⇒ Boucle = dipôle rayonnant magnétique

- Conducteurs subissant de fortes variations de tension (V_k): dipôle rayonnant électrique + transmission à la terre de courants impulsionnels I_{mc} via C_p

- Condensateur de découplage C_e (imperfections : résistance et inductance série I_p), n'empêche pas la propagation sur le réseau d'alimentation d'un courant parasite impulsionnel I_p .

Modélisation de la source

Modèle de la cellule de commutation

npere

- Courant d'entrée (I_e): générateur de courant créant le courant parasite de MD par couplage par impédance commune (C_o)
- Tension d'interrupteur (V_k): générateur de tension créant le _ courant de MC via les chemins de propagation capacitifs
- Impédances de liaison (parasites) des ≠ potentiels de la cellule à la référence : effets localisés (dimensions >> λ des signaux les + rapides) RSIL

$$I_p = I_e \cdot C_1(f) + V_k \cdot C_2(f)$$

Avec C1(f) et C2(f), fonctions de coulage MC MD

CENTRE NATIONA

DE LA RECHERCHE

Modes de commutation

Commutation à zéro de courant

Commutation commandée

V Fronts de commutation et imperfections de la cellule

Elargissement du spectre si le dV/dt croît

Source: paramètres influents

Aspects technologiques

Exemple d'un hacheur 15 kHz, V_{in} = 48 V, I_{out} = 2A

Diode snap off (recouvrement rapide)

Diode soft

Ampere

Exemple d'un hacheur 15 kHz, V_{in} = 48 V, I_{out} = 2A

Impact de la résistance de grille du MOSFET:

> $Rg = 68 \Omega$ $Rg = 22 \Omega$ $Rg = 0 \Omega$

- Chemins de propagation des perturbations
 - Intra-convertisseur :
 - Capacité entre SC et dissipateur thermique
 - Liaisons électriques internes (bounding, bus barres ...)
 - Externes :

mpere

- Câbles
- Actionneurs
- Transformateurs

Couplages

b Onduleur triphasé Spectre de Vmc (dBµV) Perturbations de MC 110 **Perturbations rayonnées** 100 **Perturbations conduites** Dégradation des roulements ... E Moteur asynchrone Zph Zmc 700 ന ത Zt Zmc Cp / Imcmot dissipateur Σ_{Imc} 10^{1} 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} Imcconv Imcligne Fréquence (Hz)

Vat Vbt Vct

Terre

Ampere

Caractéristiques et évolution du bruit électromagnétique dans les dispositifs d'alimentation embarqués sur aéronef

24

 10^{8}

Conclusion

- Mécanismes de génération des perturbations EM dans les systèmes de conversion statique d'énergie électrique embarqués:
 - Large spectre fréquentiel
 - Niveau élevé
 - Paramètres influents
 - Modes de propagation

Sompréhension des mécanismes (sources et mode de couplage):

- Prise en compte de la CEM dès la phase de conception
- Choix des technologies
- Répartition géométrique des systèmes (convertisseurs, actionneurs ...)
- Optimisation système : répartition de la CEM sur les différents constituants (filtrage, commande, blindage ...)
- Spécification d'un point de vue CEM des constituants : actionneurs, câbles ...

