Journées scientifiques du CNFRS 20-21 mars 2007, CNAM, Paris

Métamatériaux main gauche asymétriques, en micro-onde et en infrarouge, en incidence normale.

B. KANTE, S. N. BUROKUR, F. GADOT, A. de LUSTRAC, A. AASSIME J. M. LOURTIOZ.

IEF, Université Paris Sud, Bât 220, 91405 ORSAY Cedex, FRANCE

Objectifs

Conception, réalisation et caractérisation de métamatériaux nanométriques.

Structures avec μ et ε simultanément <0 dans le moyen ou lointain IR.

Plan

- Historique sur les métamatériaux
- Présentation de nos échantillons: technologie, dimensions et mesures
- Unification de deux approches dans la conception des LHMs
- Métamatériau main gauche asymétrique en micro-ondes et infrarouge
- Conclusion et perspectives

Les 4 états électromagnétiques de la matière.

Matériau avec $\varepsilon < 0$ ou $\mu < 0$

(par J.B. Pendry, Imperial College)

•Un réseau de fils fins métalliques est un matériau avec une permittivité négative (pour $\omega < \omega_p$) où ω_p est la fréquence plasma.

J.B. Pendry, PRL 76, pp.4773-4776 (1996)

•Un réseau métallique d'anneaux coupés (split ring resonators ou encore SRR) a une perméabilité négative dans une certaine gamme de fréquences.

J.B. Pendry, IEEE MTT 47, pp.2075-2084 (1999)

Matériau « main gauche »

Association des 2 précédentes structures métalliques

Composite Medium with Simultaneously Negative Permeability and Permittivity D. R. Smith *et al.*, PRL 84, pp. 4184-4187 (2000)

Fils et Anneaux coupés réalisés à l'IEF: Or sur silicium.

Transmission et réflexion mesurées des SRRs sur substrat Silicium pour les 2 polarisations

Transmission et réflexion calculées des SRRs sur substrat Silicium pour les 2 polarisations

Spectres de transmission et de réflexion calculés des SRRs sur une plus grande bande fréquentielle

Transmission et réflexion mesurées des anneaux coupés et fils

H // Gap

E // Gap

Renforcement des intensités des champs en présence du réseau de fils

Résonance magnétique (f \approx 60THz) : E // Gap - SRRs + Fils

Résonance magnétique (f \approx 60THz) : E // Gap - SRRs seuls

Perméabilité et permittivité calculées pour la structure entière.

2 résonances où les parties réelles de ε et μ sont simultanément négatives.

Unification de deux approches dans la conception des matériaux main gauche

- Approche de W. Shalaev: Matériau bicouche en IR symétrique.
- Approche reprise par J. Zhou et E. Ozbay en micro-ondes.
- Notre approche: structure monocouche asymétrique.
- Résonateurs + lignes continues en incidence normale.

Métamatériau asymétrique en micro-onde et en infrarouge

• Évolution des deux approches précédentes vers une structure monocouche asymétrique.

Métamatériau asymétrique en micro-onde et en infrarouge

Démonstration du caractère main gauche:

- Homogénéïsation et extraction de paramètres effectifs à partir des coefficients de transmission et de réflexion complexes (approche de D.R Smith *et al.*)
- Evolution de la phase avec le nombre de couches de matériaux dans la direction de propagation. (approche d' Ozbay *et al.*)

Métamatériau asymétrique en micro-onde. Comparaison mesure - simulation.

Comparaison mesure-simulation.

Conclusions et perspectives

Conclusions:

•Matériau « main gauche » asymétrique associant un réseau de fils et d'anneaux coupés en or sur silicium.

•Résonances à 60 et 150THz.

•Métamatériau main gauche asymétrique en incidence normale fonctionnant en micro-onde.

Perspectives:

 Métamatériau main gauche asymétrique sans anneau coupés en IR et dans le domaine visible (en cours).

