

métamatériaux

Jean-Michel LOURTIOZ

Institut d'Électronique Fondamentale (IEF) CNRS / Université Paris-Sud ORSAY - France

De l'expérience de Yablonovitch aux applications RF

1991

E. Yablonovitch *et al.*, *PRL 67, p. 2295,* 1991

La première bande interdite complète (3D) en micro-onde à $\lambda \approx 2,5$ cm :

La propagation de la lumière est interdite dans toutes les directions et pour toutes les polarisations

Applications RF

Ex : La cage à lumière pour des antennes de nouvelle génération

A. De Lustrac *et al.*, Journ. du CNRS, sept. 2005

Colls. : IEF, IETR, France Télécom, Advanten (RNRT 2003)

De l'expérience de Yablonovitch à la micro-nano-photonique intégrée

Vision artistique d'un circuit photonique intégré J.D. Joannopoulos, *Nature 386, p.143*, 1997

Les cristaux photoniques 2D

Contrôle de l'indice de réfraction, des cristaux photoniques aux métamatériaux

Les cousins des cristaux photoniques ?

- Combiner métaux et diélectriques pour contrôler artificiellement
 - ϵ , μ et les propriétés réfractives des structures périodiques
- Premières études initiées dans le domaine RF by J. Pendry

Métamatériau à indice de réfraction négatif en technologie de circuits imprimés

D.R. Smith et al., *PRL 85, p. 2933,* 2000

Mais aussi un renouveau de la plasmonique

• Extension des études RF aux longueurs d'onde de l'optique

Plan de l'exposé

Jouer avec la bande interdite photonique :

Le confinement optique : microcavités, microguides, microsources...

Jouer avec la dispersion de la lumière :

La « lumière ralentie », le superprisme, la réfraction négative...

Combiner métal et diélectrique : les métamatériaux

Le passage des micro-ondes à l'optique

Conclusions

Microcavités à cristal photonique 2D à faibles pertes (à $Q=\omega/\Delta\omega$ élevé)

Faibles pertes

- Matériaux nonabsorbants

- Gap photonique 2D pas de pertes dans le plan

- Minimiser les pertes hors plan

Minimiser les composantes $\mathbf{k}_{//} \leq \mathbf{k}_{\mathbf{c}}$

Éviter les variations abruptes du champ en bord de cavité Cavité L3

Décalage des trous extrêmes

Coordonnée d'espace x (λ_0)

Facteurs de qualité ultra-élevés à partir d'hétérostructures photoniques

aux hétérostructures photoniques

Q ~300.000 sur GaAs

Des microcavités allongées

Évolution des performances des microcavités à cristal photonique

Une croissance continue du facteur de qualité Q

(b) Micro-piliers

(c) Micro-disques

Mode de galerie

Potentialités des microcavités ultimes à haut facteur de qualité

• Couplage « faible » d'un émetteur au mode de cavité : exaltation de son émission spontanée (facteur de Purcell ~ Q/V)

• Exaltation des non-linéarités optiques :

- → bistables à très bas seuil (<10µW)
 → SHG et THG à très bas seuil
- M. Notomi et al., *Opt. Expr.13, p. 2678, 2005* Y. Dumeige et al., *PRL 89, p.043901, 2002*

Microguides à cristal photonique 2D sur membrane ou substrat SOI

faible vitesse de groupe (~c/100) : interactions lumière-matière renforcées

Strusture à fort contraste d'indice vertical (ex: optique membranaire)

- Des modes de Bloch guidés sous la ligne de lumière <u>ne diffractent</u> <u>pas</u> ⇒
- Ces modes sont sans pertes
- Mais, des discontinuités (ex: guide coudé) peuvent entraîner <u>des pertes</u> <u>massives</u> si elles ne sont pas conçues soigneusement

Performances des microguides à cristal photonique

• Guide W1 sur membrane Si dans l'air (une rangée de trous manquants)

Pertes de propagation : L < 5 dB/cm

E. Dulkeith, S. McNab, <u>Y. Vlassov</u> (IBM) *Phys. Rev. B* 72, *p.* 115102, 2005

Résultats similaires sur InP (groupe de Noda, Univ. Kyoto)

• Guide W1 sur substrat SOI

Pertes de propagation, L < 14 dB/cm

M.D. Settle *et al.* (UK) Optics Express, Vol. 14, p.2440, 2006

Les Microlasers III-V à cristal photonique

 $\lambda = 1520nm$ $\beta = 0,25$

Laser à microcavité

H-G. Park et al. Science 305, p. 1444, (2004) Microcavité à CP Puits quantiques substrat p-InP 1μm

10100 1987 10100 1987 10100 100 100 100 1510 1530 Wavelength (nm) **0 100 200 300 400 500 600 700 800 Current (μA)**

Vers un laser sans seuil?

Laser à microcavités couplées

T.D. Happ et al., *APL 82, p.4*, 2003

Gain élevé, modes « ralentis » Lasers courts et larges Puissance élevée ~2,3 mW

Les Microlasers III-V à cristal photonique

Fonctionnement de type DFB Fonctionnement monomode à seuil réduit et taux de réjection élevé

Laser à mode de Bloch « lent »

C.Monat *et al.*, *APL 81, p. 5167,* 2002 Kwon, Lee *et al.*, *APL 83, p. 3870,* 2003

InP membrane (~250nm) including a QW active layer

Exploiter le ralentissement de la lumière et le renforcement des interactions avec le milieu à gain

Jouer avec la dispersion de la lumière

La lumière ralentie

□ Vitesse de groupe > 100 fois plus petite que dans le vide Y.A. Vlasov *et al.*, *Nature 438*, *p.65*, Nov. 2005

 \Box Dispersion de 5×10⁸ ps/nm/km

□ CP de 100 µm équivalent à 1 km de fibre conventionnelle

→ Vers des lignes à retard optique de très petite taille

Jouer avec la dispersion : revisiter les lois de Snell Descartes ?

Jouer avec la dispersion des cristaux photoniques : effet de supercollimation

Exploitation de zones "plates" des courbes isofréquences

À fréquence donnée, toutes les composantes **k** d'un faisceau divergent sont redirigées dans la même direction

Jouer avec la dispersion des cristaux photoniques : effet de superprisme

Exploitation des points anguleux des courbes isofréquences

Kosaka et al., APL 74, p.1370, 1999

Jouer avec la dispersion des cristaux photoniques : effet de réfraction négative

Exploitation d'une pseudo-isotropie en bord de bande interdite

Courbes ou surfaces isofréquences circulaires (2D) ou sphériques avec la normale dirigée vers l'intérieur du contour

Notomi, *Phys. Rev.B* 62, *p.10696*, 2000

Effet de lentille plate Exploitation de la réfraction négative

n = -1

Pendry et al., *PRL 85, p.3966,* 2000

Jouer avec ϵ et μ : des cristaux photoniques aux métamatériaux

 Les métamatériaux sont des matériaux artificiels in 1, 2 ou 3D dont les motifs élémentaires sont conçus pour obtenir values of ε and μ

• " ϵ et μ négatifs" entraîne une réfraction négative :

V.G. Veselago, Soviet Physics Uspekhi 10, 1968

 $V_{\phi} V_G < 0$

Quel motif élémentaire pour une réponse magnétique des métamatériaux ?

 \rightarrow <u>L. Brillouin</u>, "Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices", Mc Graw Hill, 1946

→ <u>J. R. Pierce</u>, Bell Labs,
 "Traveling-Wave Tubes",
 D. Van Nostrand Company, 1950

 $V_{\phi} V_g < 0$

Exploiter des motifs métalliques avec une résonance LC

 \rightarrow <u>C. Caloz et al.</u>, "Transmission line approach of left-handed ...", IEEE Trans. Antennas 2004

Quel motif élémentaire pour des métamatériaux à main gauche (à réfraction négative) ?

→ <u>J.B Pendry et al.</u>, "Extremely low frequency plasmons in metallic mesostructures (wire arrays)", Phys. Rev. lett. 76, 1996 ($\epsilon < 0$) → <u>J.B Pendry et al.</u>, "Magnetism from conductors and enhanced non linear phenomena", IEEE Tran Microw Theory 47, 1999 ($\mu < 0$) → <u>D.R. Smith, N. Kroll</u>, "Negative Refractive Index in Left-Handed Materials", Phys. Rev. Lett. 85, p. 2933, 2000

Récents progrès dans les métamatériaux aux longueurs d'onde de l'optique

 Milieux nanostructurés présentant une réponse magnétique (μ≠1) aux longueurs d'onde des télécom. ou du (a)
 (b)

μ<0 pour une incidence oblique!

C. Enkrich *et al.*, *PRL 95*, *p. 203901, 2005*

E et μ<0 pour une incidence normale!

F. Gadot et al., J. Opt. Quant., à paraître en 2007 (cette conférence) 200 nm

μ<0 pour une incidence normale!

A.N. Grigorenko *et al.*, *Nature 438*, p.2933, 2005

Invisibilité

• Conformation des chemins optiques autour d'objets "masqués" électromagnétiquement

Trajectoires autour d'une sphère masquée (en rouge) avec le matériau de masquage (en bleu). [$\epsilon(x,y,z)$, $\mu(x,y,z)$] est choisi pour expulser le champ de la sphère intérieure. À gauche : onde plane incidente. À droite : illumination par une source ponctuelle

J. Pendry et al., Science 312, p. 1781, 2006

Invisibilité

IJ,

Objet non masqué

Objet masqué grâce à un métamatériau

Modélisation : B. Kante et al., IEF Orsay, 2007

Les cristaux photoniques graduels (CPG) peuvent créer des mirages optiques

E. Centeno, D. Cassagne, J-P. Albert, Phy.s Rev. B 73, p. 235119, (2006)

 Démonstration expérimentale à l'IEF dans le régime micro-onde (E. Akmansoy et al. 2006)

Conclusion et perspectives

2007 et demain

De nouveaux schémas expérimentaux avec des cavités de taille ultime dans les semiconducteurs

De nouvelles directions à explorer plus en avant : Les composants à « lumière lente » (ex: le laser Raman en silicium, les lasers à cascade quantique)

Les nouveaux effets (l'imagerie à très haute résolution, l'invisibilité, l'optique non réciproque (la magnéto-photonique)...

Extension à tous les types d'onde (*la phononique*), ...

La plasmonique : l'optique sub-λ ... jusqu'au niveau du transistor

Des RF à l'optique et de l'optique aux RF

A. Ourir, A. De Lustrac, J-M. Lourtioz, APL, 88, p.084103, 2006 "subwavelength cavities $(\lambda/60)$ for ultra-thin antennas"

length

2007 et demain

J.Rybczynski et al., APL 90, p. 2021104, 2006 "subwavelength waveguide for visible light"

FIG. 1. (Color online) Schematic of a coaxial cable (a) and SEM image of a nanocoax (b).

Remerciements

IEF

. . .

André De LUSTRAC Xavier CHECOURY Anatole LUPU Frederique GADOT **Eric AKMANSOY** Philippe BOUCAUD Sylvain DAVID S.N. BUROKUR Abdelwaheb OURIR Boubakar KANTE Philippe GOGOL Mathias VANWOLLEGHEM Pierre BEAUVILLAIN **Eric CASSAN**

PhC Book (Springer, April 2005) Henri BENISTY (IOTA) Daniel MAYSTRE (IF) Alexei CHELNOKOV (CEA-LETI) Jean-Michel GÉRARD (CEA-CNRS) Vincent BERGER (Univ. Paris VII)

Collaborations

Guang-Hua DUAN (Alcatel) Françoise LOZES (LAAS) Anne TALNEAU (LPN) David CASSAGNE (GES) COST P11 METAMORPHOSE (Alcatel, Univ. Würzburg, EPFL, CNRS, Glasgow, ...)

Cristaux photoniques 2D, quel confinement dans la direction verticale ?

Faible contraste d'indice vertical le guide d'onde planaire «enterré»

Fort contraste d'indice vertical le guide d'onde membranaire

Applications de la réfraction négative à l'imagerie: la superlentille

• Systèmes de focalisation à haute résolution

a) Schéma de superlentille

b) Superlentille formée d'une lame d'argent située entre les plansobjet et image

c) A gauche: image obtenue avec une lentille classique - A droite: image améliorée obtenue avec la superlentille

d) Résolutions comparées des deux lentilles

N. Fang et al., Science 308, p. 534, 2005

Microguides à cristal photonique 2D sur membrane ou substrat SOI

faible vitesse de groupe (~c/100) : interactions lumière-matière renforcées

Structure de bande obtenue à partir de mesures PSNOM

M.D. Settle, ..., <u>T. Krauss</u> (UK) *Opt. Express 15, n*[¬], *p. 219,* **2007**

Jouer avec la dispersion des cristaux photoniques : l'ultra-réfraction

0 < **n** << **1**

Enoch et al., APL 81, p.1588, 2002

Few GaAs QDs in a microdisk

E. Peter et al, Phys. Rev. Lett 95, 067401(2005)

Giant oscillator strength due to exciton center of mass delocalization

(N.B.: f~10 for InAs QDs)

Proposal :LC Andreani et al, PRB 60, 13276 (1999)

Single GaAs QD in a microdisk (CNRS/LPN)

E. Peter et al, PRL 95, 067401(2005)

Further improvement of Q necessary for cavities containing QDs

Fundamental mode folding : Distributed Feedback (DFB) laser emission

-k

k

k

n_{clad}

n_{clad}

Schematic band diagram of the triangular lattice 2D gap inside ! ΓM direction 0.35 High-frequency **DFB** component Normalized frequency (a/λ) 0.3 TE gap **Low-frequency** 0.25 **DFB** component 0.2 2D PhC «DFB like» Laser 0.15 0.05 0 0.2 0.3 0.1 0.4 0.5 0 M' Γ $k_x \sqrt{3a}/(2\pi)$ **Classical DFB Laser**

Standard hole diameter ~ 30% air filling factor

W2-3 laser at the M-point : evolution of the laser threshold and efficiency

Photonic Crystals + non-linear optics : A win-win strategy

Second-harmonic generation in AlGaAs/AlOx 1D Photonic Crystal

Photonic crystals can simultaneously provide :

- phase matching ($\Delta k = k_{2\omega}$ $2k_{\omega} = 0$) reduction of the group velocity -> stronger non-linearities
- group velocity matching

Extension to 2D -->

J.P. Mondia et al., Opt. Lett. 28, p.2500, 2003

Photonic Crystals + non-linear optics : A win-win strategy

Reconfigurable Non-Linear Photonic Crystal → Application to fast Optical Switching

Superprism and spectrometer-on-a chip : (results at IEF)

Parallel plate geometry on InP : Discontinuous refraction, angular shift of 30° for $\Delta\lambda \sim 30$ nm PhC Losses : 7 dB

A. Lupu, A. de Lustrac *Opt. Express 14, p. 2003,* 2006

PhC Light sources : Micro-emitters on silicon

Ge/Si Quantum Islands in PhC Microcavity onSOI

S. David et al., *APL 83, p. 2509*, 2003

Luminescence Efficiency $\times 100$ > 0,1%at $\lambda = 1.5 \ \mu m$

Perfect Lens in integrated optics ?

J. Pendry et al., *PRL 85, p.3966,* 2000

Theoretical modeling

P.V. Parimi et al., Nature 426, p.404, 2003

n<0

n>0

A. Berrier et al., PRL 93, 073902 , 2004

n>0

Sharp bends in PhC waveguides

High transmission : 70% Low reflection : < 1% Wide spectral coverage

Deep etch waveguides on InP Use of a W3 <-> W1 converter

A. Talneau et al., PECS V 2004

