

Détection sélective d'ions plomb par capteur gravimétrique à ondes acoustiques de surface. Apport de la reflectométrie X

J.M. Fougnion*, C. Zerrouki*, <u>N. Fourati</u>*, P. Boutin**, L. Rouseau*** et J.J. Bonnet*

** Laboratoire de Physique, Cnam, 2 Rue Conté, 75003, Paris ** Laboratoire Génie Analytique, Cnam, 292 Rue Saint Martin, 75003, Paris *** SMM, ESIEE, 2, Boulevard Blaise Pascal, Cité DESCARTES, 93162 Noisy le Grand*

✓ Introduction

✓ Le capteur gravimétrique à ondes acoustiques de surface :

Plan

✓ Principe et caractéristiques

✓ Sensibilité et limite de détection

✓ Validation du piégeage des ions plomb

→ détection gravimétrique + autres techniques

Conclusion et perspectives

Introduction

Les métaux lourds (Pb, Hg, Cd) 🗲

- ✓ Une des principales sources de pollution dans l'environnement
- ✓ Présentent, même à faibles doses, une toxicité à long terme,
- Les méthodes les plus performantes actuellement pour la détection des métaux: Spectrométrie de masse + Spectrométrie atomique

Inconvénients

- ✓ Coûts très élevés
- ✓ Techniques lourdes
- ✓ Ne se prêtent pas aux analyses rapides
- Depuis quelques années : développement de divers types de systèmes miniaturisés dédiés à l'analyse chimique / biologique
- ✓ EA 2405 : conception, développement et réalisation de capteurs à ondes acoustiques de surface fonctionnant en milieu liquide
 - ✓ Sensibilité + Sélectivité + Versatilité
 - ✓ Faible coût + Analyse en temps réel

Transduction

✓ Ligne à retard dans laquelle se propage une onde acoustique de surface (SAW)

✓ Sur le chemin acoustique peut être déposé un matériau sensible destiné à retenir sélectivement les espèces cibles

✓ Sorption des espèces \rightarrow modification de la vitesse de propagation de l'onde

✓ La ligne de retard est placée en rétroaction sur un amplificateur

✓ Signal de sortie du capteur : fréquence d'oscillation

NATIONAL DESART

Rôle de la couche d'or centrale

Grandeurs caractéristiques du capteur SAW

Périodicité des doigts $\lambda = 40 \ \mu m$ Distance centre à centreCC = 9.2 mmOuverture $d = 2 \ mm$ Fréquence de travail $f = \frac{v_s}{\lambda} \approx 104 \ MHz$

Journées Scientifiques du CNFRS« Nanosciences et radioélectricité »

Capteurs à ondes acoustiques de surface (SAW)

S'affranchir des effets de la température et de la pression
Compenser les effets de la viscosité et de la densité

Mode différentiel

 ✓ Application en milieu liquide → cellule test en PDMS (expériences avec des fluides en statique)

20-21 Mars 2007

NATIONAL DESART

Choix de la couche chimio-sélective

Problématique : détection des ions plomb en milieu aqueux

Cahier des charges :

✓ Molécule hôte ayant une grande affinité pour le plomb

✓ Faible coût

✓ Réversibilité de la réaction de piégeage du plomb

La cyclodextrine (CD)

- > Oligosaccharide formé de plusieurs unités de glucose
- Cône tronqué
 - Grande base : hydroxyles secondaires
 - >Petite base : hydroxyles primaires
- Grande capacité d'inclusion vis à vis d'une large variété de molécules et d'ions

Détermination de la sensibilité du capteur SAW

Dosage argentimétrique d'halogénures

✓ Électrodéposition de cuivre

DESART

CONSERVATOR

NATIONAL DESARTS EL MÉTIERS

Expérience de dosage argentimétrique -> qualification de la sensibilité

Détermination des valeurs de la sensibilité et de la LD → Expérience d'électrodéposition de cuivre

✓ Deux bancs de test

✓ Oscillateur : $\Delta f = f$ (masse déposée)

 \checkmark AR : $\Delta \phi = f$ (masse déposée)

- ✓ Deux capteurs SAW :
 - Zone sensible sans traitements préalables
 - **2** Greffage de la SH-CD puis nettoyage à l'aide d'une solution de piranha (H_2SO_4/H_2O_2)

Détermination de la sensibilité du capteur **1** Montage Oscillateur

Application d'un courant constant de 100 µA pendant :

Électrodéposition de cuivre sur le capteur **2** Montage Oscillateur

Application d'un courant constant de 100 µA pendant:

20-21 Mars 2007

Détermination de la sensibilité du capteur @

Sensibilité : 11,5 Hz/ng soit 160 Hz/(ng/mm²) Limite de détection à 100 MHz : 0,10 ng/mm²

Sensibilité : 2,51 10⁻⁴ rad/ng soit 3,49 10⁻³ rad /(ng/mm²)

Limite de détection à 100 MHz : 2,09 10⁻³ rad /mm²

Origine de la différence entre les dépôts de cuivre sur les capteurs **0** et **2**

DESARTS ELNÉTIERS

Apport de la Fluorescence X

Apport de la Fluorescence X

CONSERVATOIRE NATIONAL DESARTS ELNÉTIERS Validation de la complexation des ions plomb par la SH-CD

Détection gravimétrique + trois autres techniques

- La spectroscopie IR à Transformée de Fourier (FTIR) : porteuse d'informations sur la nature des liaisons chimiques caractéristiques du matériau.
- ✓ La fluorescence X : Détermination des éléments qui composent le matériau à partir de leurs raies caractéristiques
- ✓ La reflectométrie X : Sondage des états de surface (rugosité,

Validation du greffage de la SH-CD sur l'or

(spectroscopie FTIR - Mode ATR, cristal diamant)

Spectre réalisé sur un Brucker Equinox 55 au Laboratoire de matériaux polymères du Cnam

20-21 Mars 2007

CONSERVATOIRE NATIONAL DESARTS ET NÉTIERS

22

Validation de la complexation des ions plomb par la CD

(spectroscopie FTIR - Mode ATR, cristal diamant)

Spectres réalisés sur un Brucker Equinox 55 au Laboratoire de matériaux polymères du Cnam

20-21 Mars 2007

CONSERVATOIRE NATIONAL DESARTS ELMÉTIERS

Validation de la complexation des ions plomb par la CD → fluorescence X

✓ Présence du substrat en or → impossibilité de détecter le plomb via sa raie caractéristique

→ Spectres de fluorescence X à incidence très rasante

Relevés réalisés sur 1 wafer en verre + couches métalliques de
 Cr/Au identiques à la zone sensible du capteur

Validation de la complexation des ions plomb par fluorescence X

3 modes de balayage :

-Réflexion spéculaire (RS) : $\theta = \alpha$

→ exploration en « profondeur »

Détecteur Scan (DS) : θ fixe et α variable

→ exploration en « volume ou en surface »

Rocking curve (RC) : $\phi = \pi - \alpha - \theta = cte$

\rightarrow exploration en « profondeur »

CONSERVATO NATIONAL DESART T METTER

Journées Scientifiques du CNFRS« Nanosciences et radioélectricité »

Validation de la complexation des ions plomb par reflectométrie X en mode RS

Détection gravimétrique

Conclusion et perspectives

- Validation du greffage de la SH-CD et de la complexation du plomb par différentes techniques
- Premiers tests de sensibilité encourageants (12Hz/ng)

- ✓ Nouveaux capteurs SAW (déjà réalisés):
 - ✓ Avec une couche de Love sur la surface sensible: guidage de l'onde ⇒ amélioration de la sensibilité d'un ordre de grandeur
 - ✓ Avec une fréquence de travail à 400 MHz
 - Mode de Love + 7 f : amélioration de la sensibilité de deux ordres de grandeur
- Technique impulsionnelle en développement

NATIONAL DESARTS ELNETIERS

 ✓ Détection d'autres éléments biologiques (ADN, Biotine/Streptavidine, …)