

Nouvelles approches d'évaluation de la fiabilité : Perspectives pour les nanotechnologies -New approaches of reliability assessment : Prospects for nanotechnologies

L. Bechou*, Y. Danto*, JY. Deletage*, F. Verdier* D. Laffitte**, JL. Goudard**

 *Laboratoire IMS – Université Bordeaux 1 - UMR CNRS n°5218 351, Cours de la Libération – 33405 Talence Cedex mél. laurent.bechou@ims-bordeaux.fr
**AVANEX-France, Route de Villejust, 91625 Nozay Cedex mél. dominique_laffitte@avanex.com

Plan de l'exposé

- Nanotechnologies: Contraintes liées aux approches "top-down" et "bottom-up"
- Construire la fiabilité: Nouvelles approches de prévision de durée de vie (Cas d'étude)

Synthèse : Feuille de route pour l'évaluation de la fiabilité des nanotechnologies

1- Evaluation de la fiabilité : *Contexte et enjeux*

- La réduction de l'échelle technologique s'accroît rapidement
- La complexité des fonctions augmente
 - Les environnements sévères se banalisent

MAIS...

- Changements technologiques récents et majeurs (nouveaux mécanismes physiques)
 - Exigence "haute" fiabilité irréversible

Challenge fiabilité: "critique"

Objectifs de fiabilité pour les nanotechnologies*

Table 45a Reliability Technology Requirements—Near-term

Year of Production	2005	2006	2007	2008	2009	2010	2011	2012	2013	
DRAM ½ Pitch (nm) (contacted)	80	70	65	57	50	45	40	36	32	
MPU/ASIC Metal 1 (M1) ½ Pitch (nm)(contacted)	90	78	68	59	52	45	40	36	32	
MPU Physical Gate Length (nm)	32	28	25	22	20	18	16	14	13	
Early failures (ppm) (First 4000 operating hours)** [1]	50- 2000	50- 2000	<u>50–2000</u>	50- 2000	50- 2000	50- 2000	50- 2000	50- 2000	50-2000	
Long term reliability (FITS = failures in 1E9 hours) [2]	10-100	10-100	<mark>50–2000</mark>	10-100	10-100	10-100	10-100	10-100	10–100	
Soft error rate (FITs)	1000	1000	1000	1000	1000	1000	1000	1000	1000	
Relative failure rate per transistor (normalized to2005 value) [3]	1.00	0.79	0.63	0.50	0.40	0.32	0.25	0.20	0.16	Number of transistors
Relative failure rate per m of interconnect (normalized to2005 value) [4]	1.00	0.84	0.71	0.59	0.51	0.47	0.41	0.37	0.33	Customer needs; J11 length of interconnect

* Critical Reliability Challenge for The ITRS, published by RTAB at Sematech, 2005

ITRS = International Technology Roadmap for Semiconductors

Journées scientifiques du CNFRS : "Nanosciences et Radioélectricité", 20 et 21 Mars 2007, PARIS

4

IW

Notions élémentaires de fiabilité

Courbe en "baignoire" "Roller-coaster curve" ("Bath curve") Taux de défaillance Taux de défaillance λ λ Défaillances d'usure Vieillissement Défaillances prématurées Temps Temps 0 Défaillances aléatoires Taux de défaillance ≈ 0

Le challenge actuel de la fiabilité...

• Aucune défaillance (ou quasi) sur une durée spécifiée

 Une courbe des défaillances cumulées où les défaillances sont concentrées dans un intervalle de temps réduit => Difficulté à démontrer expérimentalement

Déf. : Taux de défaillance (hazard rate): 1FIT= 1def/10⁹h

Exemple de nanocomposants/nanocircuits destinés à être incorporés dans des systèmes mixtes (SOCs)

- Circuits multi-technologies et multi-interconnexions : phénomène analogue aux cartes, aux microassemblages et aux microsystèmes
- Mêmes exigences de fiabilité que les technologies ''micro''

LMS

2- Nanotechnologies:

Contraintes liées aux approches "top-down" et "bottom-up"

"TOP-DOWN": Extension des procédés actuels "micro" vers les dimensions nanométriques

"BOTTOM-UP": Synthèse chimique et exploitation des structures moléculaires ou atomiques

Points communs :

- => Nouveaux matériaux: diélectriques, interconnexions...
- => Evolution des procédés de lithographie: Extrême UV, Optique Faisceaux d'électrons, Nanoimpression...
- => Introduction de « désordre » intrinsèque dans les procédés : 1D-nanowire, réseaux CNT pour biocapteurs, matériaux organiques => Fort impact des fluctuations technologiques/dispersions paramétriques

Impact de la maturité de la technologie sur la fiabilité intrinsèque

Contraintes associées aux dispositifs nanotechnologiques

- Faible population de composants => faible rendement de fabrication
- Structures élémentaires et défauts de tailles identiques
- Sensibilité aux EOS/rad SEU
- Sensibilité aux agressions chimiques (surfaces)
- Fragilité thermique (organiques)
- Susceptibilité thermomécanique, fatigue mécanique
- Connexion avec l'environnement « micrométrique »

Figure 1. Stiction failure of cantilever beams.

3- Construire la fiabilité: *Nouvelles approches de prévision de durée de vie*

Ex. 1 - Fiabilité de DELs InGaAs/GaAs 935 nm encapsulées : *Du mécanisme physique de dégradation ... à la distribution des durées de vie (Collaboration IXL-CNES)*

- Criticité du stockage actif ($125 \text{ }^{\circ}\text{C} 110 \text{ mA}$)
- Vieillissement prématuré (après 400 h)

Origine du mécanisme de défaillance : Evolution du profil de dopage et augmentation du niveau de dopage P dans la zone active InGaAs (activée en température)

Ex. 2 - Fiabilité d'amplificateurs optiques DH InGaAsP/InP 1,55 µm : *Technologie en maturité – Reconstruction statistique de durées de vie*

Comparaison technologique de deux wafers sous contraintes accélérées 40kA/cm² - 100°C InP(P) 700 µm electrode 25 0 Wafer 1 -5 InGaAsP 20 \triangleright Zone active 1@0.6mW/1@0.6mW (%) -10 Popt/Popt (%) Zone passive -15 --- SOA 1A 6 µm -20 4 InP(N) -25 9.2 μm -30 0 Vue d'un ruban 168 336 Time (h) 504 672 après gravure et restauration 10 25 Wafer 2 Qualité épitaxie 5 WD18 Soa 9997A_ 20 > InP-p/InGaAsP l@0.6mW/l@0.6mW (%) 1⁵ 10 InP (P) supérieur ---- SOA 2A **Défauts dans zones** SCH - SOA 2B latérales du ruban -20 Spacer InP (N) 5

17

672

504

lanosciences et Radioélectr

Guide

15.0kV X40.0K '''''

-25

-30

0

168

336 Time (h)

Extrapolation par une loi de dégradation de la dérive de I@0.6mW analysée :

- Distribution des couples (a, m) expérimentaux en conditions accélérées (10 SOAs)
- Couples (a,m) sont corrélés linéairement

Renforcement statistique du nombre d'échantillons par tirages Monte-Carlo $(E_{a expérimental} = 0,7 \text{ eV})$

A. Guichardon, **Ph.D**, Univ Paris XI, Juin 1995 M. Pommies, , **Ph.D**, Univ. Limoges, Janvier 2002 **Objectif** : Reconstruire la distribution des durées de vie en tenant compte du biais (Δm) sur la loi de corrélation $\Delta m_i = m_i - (A \ln a_i + B)$

vélectricité'', 20 et 21 Mars 2007, PARIS

- Reconstruction statistique de la distribution des durées de vie d'un SOA en conditions opérationnelles
- Distribution cumulée simulée F_{an}(a, m) 1024 points

 Répartition de l'erreur entre les distributions cumulées expérimentale et simulée (%)

 Distribution des instants de défaillance en fonction du paramètre a

Ex. 3 - Fiabilité de microassemblages à forte intégration : *Prise en compte des dispersions paramétriques – Modèles mixtes (Collaboration IXL-SOLECTRON-ALCATEL)*

Reconstruction de la distribution des durées de vie de microassemblages CSP et PBGA en conditions accélérées et opérationnelles

Journées scientifiques du CNFRS : "Nanosciences et Radioélectricité", 20 et 21 Mars 2007, PARIS

IMS

Intégrer l'objectif fiabilité dès la mise au point technologique

- ✓ Choix technologiques: matériaux, procédés, configurations
- ✓ Stabiliser les procédés (approche "bottom-up")
- ✓ Identifier les paramètres critiques et les contraintes actives (AMDEC)
- ✓ Analyser l'effet des dispersions technologiques et les contrôler
- ✓ Répertorier et classer les mécanismes de défaillance (tests accélérés)
- ✓ Intégrer dans le développement les aspects interconnexions et packaging
- ✓ Développer des architectures circuits tolérantes (reconfiguration, redondance)

Proposition d'une feuille de route pour l'évaluation de la fiabilité des dispositifs nanotechnologies

Journées scientifiques du CNFRS : ''Nanosciences et Radioélectricité'', 20 et 21 Mars 2007, PARIS

IMS

■ Vers la prise en compte de l'aspect microscopique pour la simulation de la fiabilité...

Collaboration IMS – Université McMaster (Ontario)
Proposition d'un projet blanc ANR : "FIQnano" (IMS-CENBG-ICB-LPCNO/INSA)

