

Modélisation optique des cellules solaires organiques

F. Monestier, J.J. Simon, Ph. Torchio, M. Cathelinaud* et L. Escoubas

* Laboratoire TECSEN U.M.R.- C.N.R.S. 6122 Marseille

* Institut Fresnel U.M.R.- C.N.R.S. 6133 Marseille

Introduction
Modélisation et optimisation optique de cellules organiques
Exemples d'optimisation
Exemples de modélisation
Conclusion

STRUCTURE ET PRINCIPE D'UNE CELLULE SOLAIRE ORGANIQUE

- + Absorption $\alpha = 10^5$ cm⁻¹
- L_{diff} excitonique (qq 10 nm)
- Gap (2-3 eV)
 - Mobilités (10⁻⁴ cm²/Vs)

Conversion photovoltaïque dans une cellule solaire organique :

STRUCTURES DES COUCHES ACTIVES

Jonction PN

Pentacene (donneur)

PTCDI (accepteur)

Réseau interpénétré (blend)

MODELISATION DE LA CELLULE

- Possibilité d'ajuster les différentes épaisseurs des films afin que le champ électromagnétique soit maximum dans la couche active du composant

Système matriciel reliant les composantes tangentielles E and H:

$$\begin{bmatrix} E_{j-1} \\ H_{j-1} \end{bmatrix} = \prod_{j=0}^{n+1} \begin{bmatrix} \cos \delta_j & \frac{-j}{Y_j} \sin \delta_j \\ -j Y_j \sin \delta_j & \cos \delta_j \end{bmatrix} \begin{bmatrix} E_j \\ H_j \end{bmatrix}$$

$$\delta_{j} = \frac{2 \pi n_{j} d_{j}}{\lambda}$$
 Déphasage introduit par la couche j

Y : admittance optique

PROFIL DU CHAMP ELECTROMAGNETIQUE

Hypothèses

- Couches homgènes et isotropes
- **Interfaces planes**
- - n et k ne varient pas avec les épaisseurs

INFLUENCE DE L'EPAISSEUR DE LA COUCHE ACTIVE 200 nm Calcul pour $\lambda = 669 \text{ nm}$ 1.8 1.6 -Blend [E]² (a.u.) 110 nm 1.8-**Blend** 1.6-0.0 --1.1 (a.u.) -0.1 [E]₅ 3000 1000 2000 4000 5000 Thickness (10⁻¹⁰m) $I E I^2$ 0.8 0.6-**70** nm 0.4-1.8 -0.2-Blend 1.6 -ΑI 0.04 1000 1500 2000 2500 3000 3500 500 ITO Thickness (10m) El₂ (a.u.) 0.2 0.0 1500 2000 2500 3000 500 1000 Thickness (10⁻¹⁰m)

Epaisseur de la couche active

ENERGIE DISSIPEE / NOMBRE D'EXCITONS GENERES

Répartition de l'Energie dissipée (Q en W.m⁻²) et du taux d'excitons générés (G) dans la cellule en tenant compte du spectre solaire

$300 \text{ nm} < \lambda < 600 \text{ nm}$:

G: taux de génération des excitons

PROCEDURE D'OPTIMISATION

Indices optiques $n(\lambda)$ and $k(\lambda)$ de chaque couche

TECSEN
Software

Résultats:

- épaisseurs optimales $\{d_{1opt}, d_{2opt}, d_{3opt},...\}$
- Q_{zone active} maximisée

Géométrie de la structure:{ e₁, e₂, e₃...)

+ épaisseurs limites de chaque couche

Paramètres de calcul: Nombre d'itérations, valeurs des pas d'intégrations et d'optimisation...

Simplex
non linéaire

- Optimisation simultanée des différentes épaisseurs
- Reduction du temps de calcul

Et pour des géométries de cellules plus complexes....

- Maximisation de l'énergie dans plusieurs couches actives
- Equilibrage de l'énergie entre les différentes couches actives

PROPRIETES OPTIQUES DES MATERIAUX

ellipsométrie spectroscopique

K

ITO

ITO Glass **PEDOT**

PEDOT: PSS

ITO

Glass

P3HT/PCBM

P3HT/PCBM Glass

EXEMPLE D'OPTIMISATION: Cellule Bicouche

EXEMPLE D'OPTIMISATION: Cellule tandem (1/2)

Objectif: Optimisation et Equilibrage des énergies dans les deux couches actives

$$\eta_{\it EQE}\!=\!rac{J_{cc}V_{co}FF}{P_{\it incidente}}$$

Al

Couche active 1

Couche active 2

$$J_{cc}^{\text{cellule tandem}} = \min(\sum_{i=1}^{2} J_{cc}^{i}) \text{ et } V_{co}^{\text{cellule tandem}} = \sum_{i=1}^{2} V_{cc}^{i}$$

EXEMPLE D'OPTIMISATION: Cellule tandem (2/2)

Structure d'étude

ITO
Pedot
P3HT:PCBM
Or
P3HT:PCBM
AI

$$V_{oc} = 0.58$$

Cellule simple optimisée

$$Q \times V_{oc} = 127$$

Cellule tandem optimisée

Epaiseurs (nm)	Q in W.m ⁻²
180	
45	
57.4	}- Q = 122
1	- 0 400
118.6	Q = 120
100	

$$Q \times V_{oc} = 139.2$$

EXEMPLE DE MODELISATION: Evolution de Jcc avec l'épaisseur des blends P3HT/PCBM (1/2)

- Objectif: compréhension des phénomènes de transport de charges
- ☐ <u>Méthode</u>: modélisation optique et électrique + comparaison avec les résultats expérimentaux

Structure d'étude

Couche	Epaisseur
ITO	180 nm
PEDOT	45 nm
P3HT/PCBM	varie w/w: 1 :1
LiF	1 nm
Al	100 nm

Etape 1: Modélisation optique (calculs de E(z), Q(z,l) et de G(z))

fit

$$G(z) = \sum_{i=0}^{n} a_{i} \cdot z^{i} + b_{i} \cdot e^{(-c_{i}z)} + e_{i} + \dots$$

$$J_n = \mu_n e E n + \mu_n k_B T \frac{dn}{dx},$$

EXEMPLE DE MODELISATION: Evolution de J_{cc} avec l'épaisseur des blends P3HT/PCBM (2/2)

Etape 3: Réalisation de cellules de 8 épaisseurs différentes

12 cellules de 28 mm² pour chaque épaisseur

Etape 4: Comparaison et fit modèle-expérience

Mise en évidence:

- > Du type de recombinaison
- > Du taux de dissociation des excitons

EXEMPLE DE MODELISATION: Blends Pentacène / Perylène (1/2)

- ☐ Objectif: compréhension des phénomènes limitant les rendements des blends Pentacene: PTCDI-C₁₃H₂₇
- Méthode: modélisation optique et électrique + comparaison avec les résultats expérimentaux

Matériaux

Motivations:

Recouvrement spectral 0.30

—□— pentacene —△— PTCDI-C₁₃H₂₇ 0.25 0.20 Absorbance $\eta = 2\%$ 0.00 -700 500 600 800 900 Wavelength (nm)

Ajay K. Pandey, Sylvie Dabos-Seignon, and Jean-Michel Nunzia, APPLIED PHYSICS LETTERS 89, 113506 (2006)

Etape1: Modélisation optique

Wavelength (nm)

EXEMPLE DE MODELISATION: Blends Pentacène / Perylène (2/2)

Etape 2: Modélisation électrique / comparaison avec résultats expérimentaux

√ Calcul de Jsc / évaluation des pertes

$$\frac{1}{e}\frac{dJ_{n}(z)}{dx} + G(z) - R(z) = 0$$

✓ Estimation des longueurs de diffusion des excitons à partir de l'EQE de bicouches **Pentacene : PTCDI-C13H27**

Etape 3: Caractérisations morphologiques (AFM)

☐ Conclusions:

- potentiel important Jcc = +/- 15 mA/cm²
- blend 3:1 optimal
- rendements limités par les L_{diff} des excitons et les recombinaisons

CONCLUSION

La prise en compte des phénomènes interférentiels est indispensable à la modélisation et à la compréhension des phénomènes optiques et électriques décrivant la conversion photovoltaïque des cellules solaires organiques.

Le logiciel que nous avons développé permet:

- de **calculer et de maximiser l**'énergie absorbée par la couche active de la cellule sous éclairement solaire.
- d'équilibrer les énergies absorbées par plusieurs couches dans le cas de cellules tandem.
- de **modéliser** l'énergie absorbée et les densités de courant associées dans les cellules constituées de réseaux interpénétrés.