Influence of gate capacitance on CNTFET performance using Monte Carlo simulation

H. Cazin d'Honincthun,

S. Retailleau, A. Bournel, P. Dollfus, J.P. Bourgoin*

Institut d'Electronique Fondamentale (IEF) UMR 8622 – CNRS-Université Paris Sud 11, Orsay, France *Laboratoire d'électronique moléculaire, CEA/DSM/DRECAM/SPEC, CEA Saclay, France

- Carbon nanotubes: high potential material
- Carbon nanotubes: Model for calculations (Monte Carlo)
- Evaluation of Mean Free Path
- Carbon nanotube field effect transistor simulation

Potentialities of Carbon nanotubes

Charge transport and confinement

- ✓ Charge transport is quasi-ballistic: few interactions
- ✓ Charge confinement (1D): good control of electrostatics

No dangling bonds

 \checkmark Possibility to use High K material for oxide

Band structure « quasi » symmetric

 \checkmark Transport properties identical for electron and hole (same m*)

Carbon nanotubes can be either metallic as well as semi-conducting

✓ All-nanotube-based electronic is possible

Plan

- Carbon nanotubes: high potential material
- Carbon nanotubes: Model for calculations (Monte Carlo)
- Evaluation of Mean Free Path
- Carbon nanotube field effect transistor simulation

Particle Monte-Carlo method

Study of carrier transport in this work: solving the *Boltzmann* equation by the

Monte Carlo method

$$\frac{\partial f}{\partial t} = -\vec{v} \cdot \vec{\nabla}_r f - \frac{\vec{F}}{\hbar} \cdot \vec{\nabla}_k f + \frac{\partial f}{\partial t} \bigg|_{collisions}$$

Statistical solution :by *Monte Carlo method*

- $f(\vec{r}, \vec{k}, t) \rightarrow$ assembly of individual particles
- 1 particle $\Leftrightarrow \vec{r}(t), \vec{k}(t)$
- *N* particles allow us to reconstruct $f(\vec{r}, \vec{k}, t)$

Band structure and phonons

Energy dispersion calculated by:

- Tight-binding
- Zone-folding

Phonon dispersion curves calculated by zone folding method

Approximation

- Longitudinal acoustic and optical modes
 - are considered as **dominant** like in graphene
 - Analytical approximation of dispersion curves [Pennington, Phys. Rev. B 68, 045426 (2003)]

+ RBM phonon $(E_{RBM} \approx Cst./d_t)$

[M. Machon et al., Phys. Rev. B 71, 035416, (2005)]

Ex: Tube index n=19, $E_{RBM}=19$ meV

Scattering Events Calculation

• Scattering rates : 1st order Perturbation Theory by deformation potential model

with: $D_{aco} = 9 \text{ eV}$ [L. Yang, M.P. Anantram et al. Phys. Rev. B 60, 13874 (1999)] $D_{RRM} = 0.65 \text{eV/cm} (for n = 19) \text{[M. Machon et al., PRB 71, 035416 (2005)]}$ Intrasubband acoustic scattering Elastic process **Intersubband transition** \longrightarrow *Inelastic* process ($E = \hbar \omega$) (F **n** = 19 intervalley scattering from subband 1 intravalley scattering from subband 1 10^{14} 1015 1-1 em O 1-2 em O 1-3 em O 1-3 em O 1-2 em O 1-3 em A 1-2 em A 1-3 em A Scattering rates (s⁻¹) 1014 Scattering rates (s⁻¹) 1-2 em A 1013 1013 1-1 em A 1012 10¹² 1-1 em rbm 2 ab A 1-3 ab A 1-2 ab A 1011 1-3 ab A 1-2 ab O 1-3 ab O 1011 1010 0.2 1.2 0.4 0.6 0.8 0.2 0 0.4 0.6 0.8 0 1.2Energy(eV) Energy (eV) Hugues Cazin d'Honincthun – URSI - 20/03/2007 UPS

Plan

- > Carbon nanotubes: high potential material
- Carbon nanotubes: Model for calculations (Monte Carlo)
- Evaluation of Mean Free Path
- Carbon nanotube field effect transistor simulation

Mean Free Path

Plan

- > Carbon nanotubes: high potential material
- Carbon nanotubes: Model for calculations (Monte Carlo)
- Evaluation of Mean Free Path

Carbon nanotube field effect transistor simulation

The modelled transistor

Coaxially gated carbon nanotube transistor with heavily-doped source drain extensions CNTFET

Characteristics:

- Zigzag tube (19,0) $d_t = 1.5$ nm $E_G = 0.55$ eV
- Cylindrically gated
- Ohmics Contacts (heavily n-doped)
- Intrinsic channel
- High K gate insulator HfO₂ ($EOT = 16, 1.4, 0.4, 0.1 \text{ nm} C_{OX} = 72, 210, 560, 1060 \text{ pF/m}$)

Conduction band

First subband energy profile

Capacitive effects

$I_D - V_{GS}$ Characteristics

Expected result : I_D increases with oxide capacitance C_{ox} but limited enhancement for high C_{OX} values

Evaluation of Ballistic Transport

Unstrained Si. DG-MOSFET vs c-CNTFET

CNTFET : 70% of ballistic electrons at the drain end for $L_{ch} = 100$ nm **Unstrained Si DG** : 50% of ballistic electrons pour $L_{ch} = 15$ nm

$I_D - V_{DS}$ characteristics

Device parameters extracted from simulation ($I_{off}=0.1nA$)

C _{OX} (pF/m) /EOT(nm)	210/ 1.4	560/ 0.4	1060/ 0.1	Expe.* 1.5
S (mV/dec)	70	65	60	70
$I_{ON}(\mu \mathbf{A})$	24	40	44	5
$g_m(\mu S)$	32	62	100	20

$$V_{DD} = 0.4 V$$

High values of S and g_m are obtained

Acceptable agreement with experiments

* *H. Dai, Nano Letter, vol.5, 345, (2005) : L=80nm, EOT=1.5nm*

UPS

I_{ON}/I_{OFF} ratio (V_{DD})

* *H. Dai, Nano Letter, vol.5, 345, (2005) : L=80nm, EOT=1.5nm*

UPS

Conclusion

This Monte Carlo simulation of a CNTFET shows excellent performances:

- Excellent electrostatic gate control (quantum capacitance regime)
- High fraction of ballistic electrons in the transistor channel
- High performances at relatively low power supply

